

Data sheet

Flow controller (PN 16) AVQ - return and flow mounting

Description

AVQ is a self-acting flow controller primarily for use in district heating systems. The controller closes when set max. flow is exceeded.

The controller has a control valve with adjustable flow restrictor and an actuator with one control diaphragm.

Main data:

- DN 15-32
- k_{vs} 1.6-10 m³/h
- Flow range 0.06-7.3 m³/h
- PN 16
- Flow restrictor Δp: 0.2 bar
- Temperature:
 - Circulation water / glycolic water up to 30%: 2 ... 150 °C
- Connections:
 - Ext. thread (weld-on, thread and flange tailpieces)

Ordering

Example:

Flow controller; DN 15; $k_{\rm VS}$ 1.6; PN 16; flow restrictor Δp 0.2 bar; $T_{\rm max}$ 150 °C, ext. thread

 1× AVQ DN 15 controller Code No: **003H6711**

Option:

- 1× Weld-on tailpieces Code No: **003H6908**

The controller will be delivered completely assembled, inclusive impulse tube between valve and actuator.

AVQ Controller

Picture	DN (mm)	k vs (m³/h)	Connection		Code No.
_		1.6			003H6711
		2.5		G ¾ A	003H6712
d <u>5</u> 3d0	15	4.0	Cylindr. ext. thread acc. to		003H6713
	20	6.3	ISO 228/1	G 1 A	003H6714
	25	8.0		G 1¼ A	003H6715
	32	10		G 1¾ A	003H6716

Accessories

Picture		Type designation	DN	Connection	Code No.	
			15			003H6908
		Weld-on tailpieces	20	_		003H6909
	weid-off talipleces	25	_	003H6910		
			32		003H6911	
			15		R 1/2	003H6902
	External thread tailpieces	20	Conical ext. thread acc. to EN 10226-1	R 3/4	003H6903	
		25		R 1	003H6904	
		32		R 11/4	003H6905	
		15	Flanges PN 25, acc. to EN 1092-2		003H6915	
	Flange tailpieces	20			003H6916	
		25		003H6917		

© Danfoss | 2021.12 Al083486472513en-010502 | 1

Danfoss

Ordering (continuous)

Service kits

Picture	Type designation	DN	k_{vs} (m³/h)	Code No.	
			1.6	003H6863	
		15	2.5	003H6864	
	Valve insert		4.0	003H6865	
		20	6.3	003H6866	
		25	8.0	00311505	
		32	10	003H686	
	Actuator		Fixed setting (bar)	Code No.	
	Actuator		0.2	003H682	

Technical data

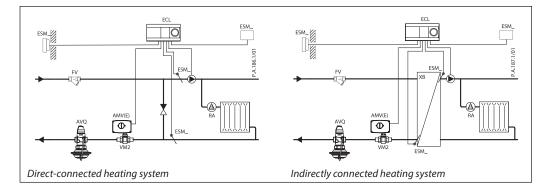
Valve

Nominal diameter			DN	15			20	25	32	
k _{vs} value				1.6	2.5	4.0	6.3	8.0	10	
Range of max.			from	m³/h	0.06	0.08	0.09	0.1	0.1	0.15
flow setting			to		1.4	1.8	2.7	4.5	6.0	7.3
Cavitation factor z					≥ 0.6 ≥ 0.55					0.55
Leakage acc. to standard IEC 534			% of k _{vs}	≤ 0.02 ≤ 0.0					≤ 0.05	
Nominal pressure	2			PN	25					
Min. differential p	ressure			la a	see remark ²⁾					
Max. differential p	Max. differential pressure			bar	12					
Medium					Circulation water / glycolic water up to 30%					
Medium pH					Min. 7, max. 10					
Medium temperature			°C	2 150						
valve				External thread						
Connections		4-11-1			Weld-on and external thread					
	tailpieces				Flange -					-
Materials										
Valve body					Red bronze CuSn5ZnPb (Rg5)					
Valve seat				Stainless steel, mat. No. 1.4571						
Valve cone				Dezincing free brass CuZn36Pb2As						
Sealing				EPDM						
Pressure relieve s	Pressure relieve system				Piston					

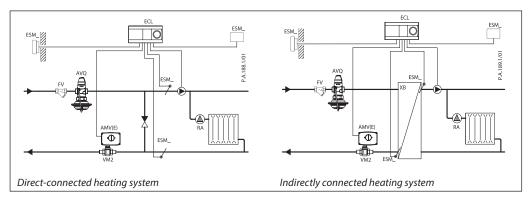
 $^{^{\}scriptscriptstyle 1)}$ Δp_b - differential pressure over flow restrictor

Actuator

Туре		AVQ		
Actuator size	cm ²	39		
Nominal pressure	PN	16		
Flow restrictor diff. pressure	bar	0.2		
Materials				
Actuator housing		Zinc plated, DIN 1624, No. 1.0338		
Diaphragm		EPDM		
Impulse tube		Copper tube Ø 6 × 1 mm		

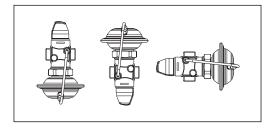

2 | Al083486472513en-010502 © Danfoss | 2021.12

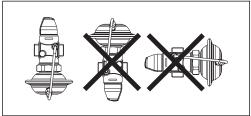
Depends on the flow rate and valve k_{VS} ; For $Q_{set} = Q_{max} \rightarrow \Delta p_{min} \ge 0.5$ bar; For $Q_{set} < Q_{max} \Rightarrow \Delta p_{min} = \left(\frac{Q}{k_{VS}}\right)^2 + \Delta p_b$



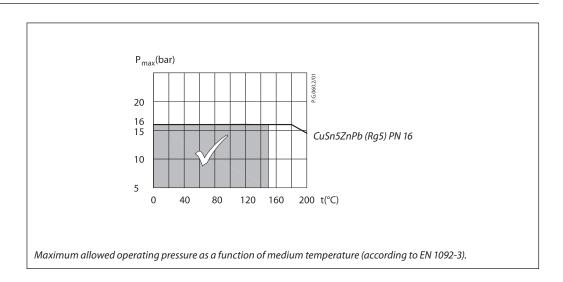
Application principles

- Return mounting


- Flow mounting

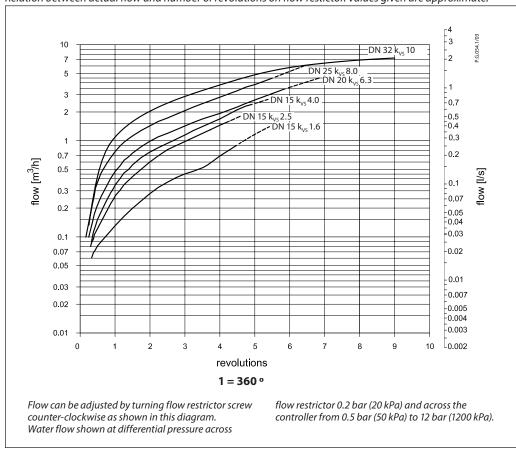


Installation positions


Up to medium temperature of 100 °C the controllers can be installed in any position.

For higher temperatures the controllers have to be installed in horizontal pipes only, with a pressure actuator oriented downwards.

Pressure temperature diagram



© Danfoss | 2021.12 Al083486472513en-010502 | 3

Danfoss

Flow diagram

Sizing and setting diagram Relation between actual flow and number of revolutions on flow restictor. Values given are approximate.

Note:

For max flow setting on the controller diagrams from Instructions should be used.

4 | Al083486472513en-010502 © Danfoss | 2021.12

Sizing

- Directly connected heating system

Example 1

Motorised control valve (MCV) for mixing circuit in direct-connected heating system requires differential pressure of 0.2 bar (20 kPa) and flow less than 900 l/h.

Given data:

 $\boldsymbol{Q}_{\text{max}}$ $= 0.9 \text{ m}^3/\text{h} (900 \text{ l/h})$ Δp_{min} = 0.8 bar (80 kPa) $\Delta p_{circuit}^{min}$ = 0.1 bar (10 kPa)

 $\begin{array}{c} \Delta p_{MCV} \\ \Delta p_b^{\ 2)} \end{array}$ = 0.2 bar (20 kPa) selected

= 0.2 bar (20 kPa)

Remark:

The total (available) pressure loss across the controller is:

$$\Delta p_{\text{AVQ,A}} = \Delta p_{\text{min}} - \Delta p_{\text{MCV}} = 0.8 - 0.2$$

$$\Delta p_{AVQ,A} = 0.6 \text{ bar (60 kPa)}$$

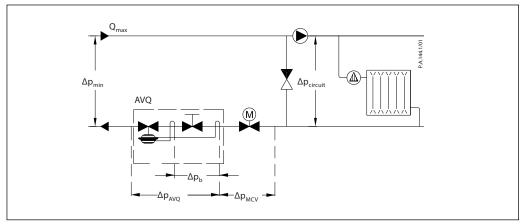
Possible pipe pressure losses in tubes, shut-off fittings, heatmeters, etc. are not included.

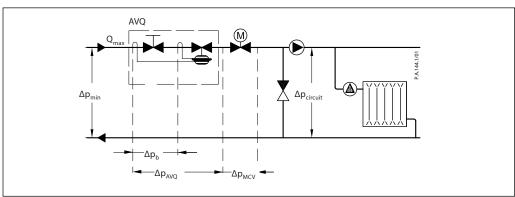
Select controller from flow diagram, page 4, with the smallest possible $k_{\mbox{\scriptsize VS}}$ value considering available flow ranges.

$$k_{vs} = 1.6 \text{ m}^3/\text{h}$$

The min. required differential pressure across the selected controller is calculated from the

$$\Delta p_{AVQ,MIN} = \left(\frac{Q_{max}}{k_{VS}}\right)^2 + \Delta p_b = \left(\frac{0.9}{1.6}\right)^2 + 0.2$$


 $\Delta p_{AVQ,MIN} = 0.52 \text{ bar (52 kPa)}$


 $\Delta p_{\text{AVQ,A}} > \Delta p_{\text{AVQ,MIN}}$

0.6 bar > 0.52 bar

Solution:

The example selects AVQ DN 15, $k_{\rm VS}$ value 1.6, flow setting range 0.06-1.4 m³/h.

¹⁾ $\Delta p_{circuit}$ corresponds to the required pump pressure in the heating circuit and is not to be considered when sizing the

²⁾ Δp_b is differential pressure over flow restrictor.

Sizing (continuous)

Indirectly connected heating system

Example 2

Motorised control valve (MCV) for indirectly connected heating system requires differential pressure of 0.3 (30 kPa) bar and flow less than

Given data:

 $\boldsymbol{Q}_{\text{max}}$ $= 1.5 \text{ m}^3/\text{h} (1500 \text{ l/h})$ Δp_{min} = 1.1 bar (110 kPa) $\Delta p_{\text{exchanger}} = 0.1 \text{ bar (10 kPa)}$ = 0.3 bar (30 kPa) selected

 Δp_{MCV} $\Delta p_b^{-1)}$ Remark: = 0.2 bar (20 kPa)

 $^{\scriptscriptstyle{1)}}$ Δp_b is differential pressure over flow restrictor

The total (available) pressure loss across the controller is:

$$\begin{array}{ll} \Delta p_{\text{AVQ,A}} &= \Delta p_{\text{min}} \! - \! \Delta p_{\text{exchanger}} \! - \! \Delta p_{\text{MCV}} \\ &= 1.1 - 0.1 - 0.3 \end{array}$$

 $\Delta p_{AVQ,A} = 0.7 \text{ bar (70 kPa)}$

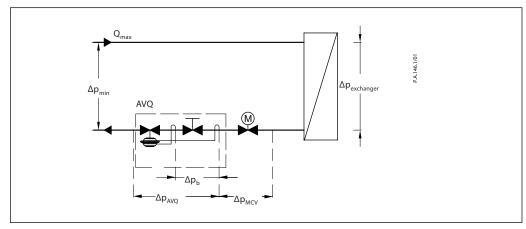
Possible pipe pressure losses in tubes, shut-off fittings, heatmeters, etc. are not included.

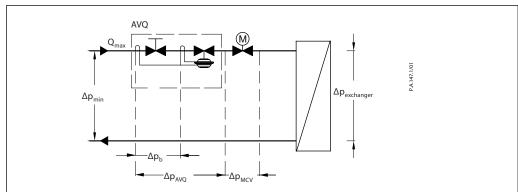
Select controller from flow diagram, page 4, with the smallest possible k_{vs} value considering available flow ranges.

$$k_{\text{VS}} = 2.5 \text{ m}^{\text{3}}/\text{h}$$

The min. required differential pressure across the selected controller is calculated from the

$$\Delta p_{\text{AVQ,MIN}} = \left(\frac{Q_{\text{max}}}{k_{\text{VS}}}\right)^2 + \Delta p_b = \left(\frac{1.5}{2.5}\right)^2 + 0.2$$

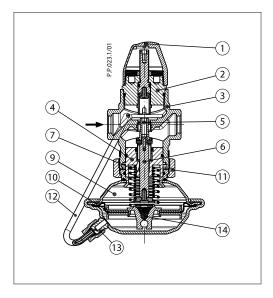

 $\Delta p_{AVQ,MIN} = 0.56 \text{ bar (56 kPa)}$


 $\Delta p_{AVO,A} > \Delta p_{AVO,MIN}$

0.7 bar > 0.56 bar

Solution:

The example selects AVQ DN 15, k_{vs} value 2.5, flow setting range 0.08-1.8 m³/h.



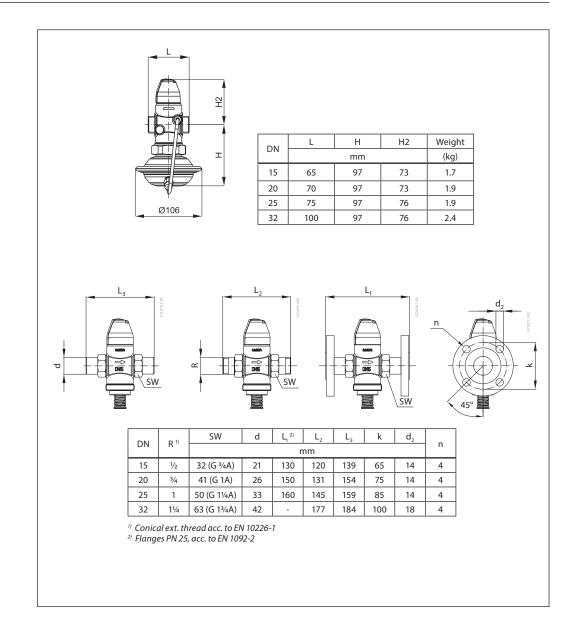
Design

- 1. Cover
- 2. Adjustable flow restrictor
- 3. Valve body
- 4. Valve insert
- **5.** Pressure relieved valve cone
- 6. Valve stem
- **7.** Built-in spring for flow rate control
- 8. Control drain
- 9. Actuator
- **10.** Control diaphragm for flow control
- 11. Union nut
- 12. Impulse tube
- **13.** Compression fitting for impulse tube
- 14. Excess pressure safety valve

Function

Flow volume causes pressure drop across the adjustable flow restrictor. Resulting pressures are being transferred through the impulse tubes and/or control drain in the actuator stem to the actuator chambers and act on control diaphragm for flow control. The flow restrictor diff. pressure is controlled and limited by means of built-in spring for flow control. Control valve closes on rising differential pressure and opens on falling differential pressure to control max flow.

Controller is equipped with excess pressure safety valve, which protects control diaphragm for flow control from too high differential pressure.


Settings

Flow setting

Flow setting is being done by the adjustment of the flow restrictor position. The adjustment can be performed on the basis of flow adjustment diagram (see relevant instructions) and/or by the means of heat meter. **AVQ (PN 16)**

Dimensions

Danfoss A/S

Climate Solutions • danfoss.com • +45 7488 2222

Any information, including, but not limited to information on selection of product, its application or use, product design, weight, dimensions, capacity or any other technical data in product manuals, catalogues descriptions, advertisements, etc. and whether made available in writing, orally, electronically, online or via download, shall be considered informative, and is only binding if and to the extent, explicit reference is made in a quotation or order confirmation. Danfoss cannot accept any responsibility for possible errors in catalogues, brochures, videos and other material. Danfoss reserves the right to alter its products without notice. This also applies to products ordered but not delivered provided that such alterations can be made without changes to form, fit or function of the product.

All trademarks in this material are property of Danfoss A/S or Danfoss group companies. Danfoss and the Danfoss logo are trademarks of Danfoss A/S. All rights reserved.