

TA – Regulator K 512

Регулятор расхода

Техническая информация

Применение

Системы тепло- и холодоснабжения

Назначение

Автоматическое поддержание заданного расхода

Рабочее давление

PN 25

Максимальный перепад давления на клапане

1600 кПа = 16 бар

Перепад давления на дросселе клапана

(F_c) 20 или 12 кПа

Точность регулирования

 F_c 12 κ $\Pi a = \pm 5 \%$ F_c 20 κ $\Pi a = \pm 3 \%$

Диапазон рабочих температур

Максимальная: +150 °C Минимальная: -10 °C

Тип присоединения

DN 15 – 50 муфтовое, фланцы, под приварку
DN 65 – 125 фланцы

Теплоноситель

Вода и нейтральные жидкости, вода с гликолями

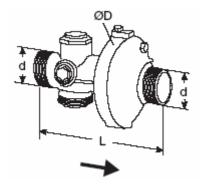
Материал

Корпус – ковкий чугун GGG 40,3 Диафрагма и уплотнения – EPDM

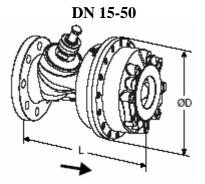
Защитное покрытие

Покраска электростатическим методом

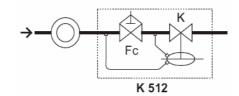
Маркировка


TA, DN, PN, GGG 40.3, k_{vs} , направление потока

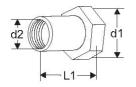
Фланцы

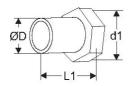

DN 15 - 50 согласно EN-1092-2:1997, тип16 DN 65 - 80 согласно EN-1092-2:1997, тип 21

ВНИМАНИЕ! Присоединительные штуцера для регуляторов DN 15 – 50 *поставляются отдельно*


TA – Regulator K 512

K 512	DN	D "	d	L	$\mathbf{k}_{\mathbf{v}\mathbf{s}}$	q _{max} м ³ /ч	КГ
52 756-020	15	G 1	78	110	4,1	1,1	1
52 756-020	20	G 1	78	110	4,1	1,1	1
52 756-032	25	$G 1^{-1}/_{4}$	97	150	16	4	1,8
52 756-032	32	$G 1^{-1}/_{4}$	97	150	16	4	1,8
52 756-050	40	G 2	125	190	35	10	4,2
52 756-050	50	G 2	125	190	35	10	4,2
52 756-065	65	-	200	290	70	20	22
52 756-080	80	-	200	310	70	24	24



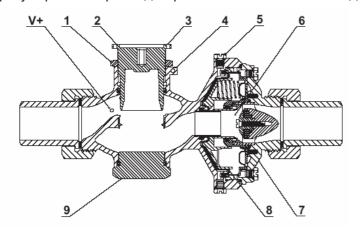

- Направление потока

Присоединительные комплекты

Внутренняя резьба DN 15-50

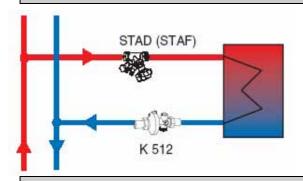
Под приварку DN 15-50

Фланцы DN 15-50

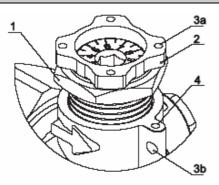

TA No	d1	d2	L1
52 759-015	G1	G1/2	26
52 759-020	G1	G3/4	32
52 759-025	G1 1/4	G1	47
52 759-032	G1 1/4	G1 1/4	52
52 759-040	G2	G1 1/2	52
52 759-050	G2	G2	64,5

TA No	d1	d	L1
52 759-315	G1	20,8	37
52 759-320	G1	26,3	42
52 759-325	G1 1/4	33,2	47
52 759-332	G1 1/4	40,9	47
52 759-340	G2	48,0	47
52 759-350	G2	60,0	52

TA No	d1	D	L1
52 759-615	G1	95	10
52 759-620	G1	105	20
52 759-625	G1 1/4	115	5
52 759-632	G1 1/4	140	15
52 759-640	G2	150	5
52 759-650	G2	165	20


Принцип действия К 512

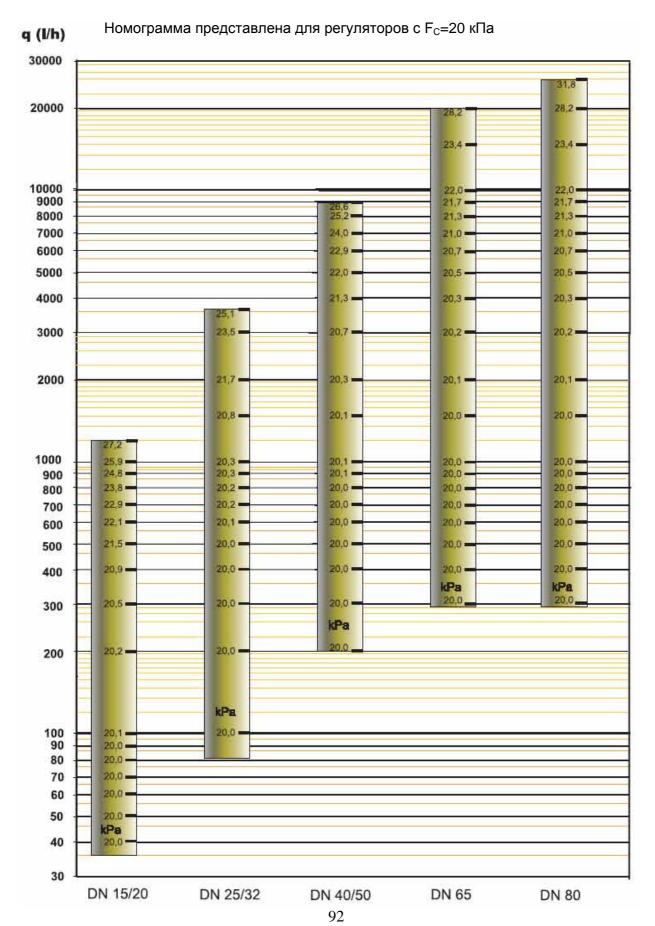
Дроссель регулирования расхода (2) и регулятор перепада давления (6) установлены последовательно в одном общем корпусе (7). Давление перед дросселем по внутренней импульсной трубке (V+) действует на одну сторону мембраны регулятора (8) и старается его закрыть. Давление за дросселем действует по другой импульсной трубке на другую сторону мембраны и старается открыть вентиль силой пружины. Точность регулирования расхода практически не зависит от давления перед и за регулятором.


- 1. Фиксирующая гайка
- 2. Дроссель
- 3. Отверстие для пломбирования дросселя
- 4. Отверстие для пломбирования на корпусе
- 5. Спускник воздуха
- 6. Автоматический регулятор перепада давления
- 7. Корпус клапана
- 8. Мембрана
- 9. Заглушка

Монтаж

Монтируется на подающем и возвратном трубопроводе. Направление потока показано стрелкой на корпусе клапана. Рекомендуется установить фильтр перед регулятором. Во время первого заполнения системы нужно несколько раз спустить воздух из регулятора при помощи винтов для спуска воздуха (5). Вместо заглушки R ¹/₄" можно вставить дренажный вентиль ¹/₄", измерительный штуцер для измерения давления или температуры.

Регулирование расхода


	Presetting			
	0,0	1,0	2,0	3,0
,0	0	162	634	911
,1	16	209	669	915
,2	32	256	705	920
,3	48	304	740	925
.4	64	346	772	930
,5	80	399	811	935
,6	96	446	831	939
,7	112	493	851	943
,8	128	540	871	947
,9	144	582	889	951
		Flov	v (l/h)	

Отпустите гайку фиксации настройки (1). Поверните дроссель (2) по часовой стрелке в начальное положение 0,00 оборотов, тем самым закрыв клапан. Затем открывайте дроссель, отслеживая по шкале количество оборотов, соответствующее требуемому расходу в соответствии с таблицей расхода, индивидуальной для каждого клапана. Затяните гайку фиксации. Установленные данные можно опломбировать, используя отверстия в корпусах дросселя (3а) и клапана (3b). Таблица расхода с номером регулятора прилагается к документации. Оригинал хранится в архиве поставщика.

Подбор диаметра

1. Подберите по номограмме наименьший диаметр регулятора для получения расчётного расхода с учетом падения давления на дросселе F_C

$$\Delta P = \left(\frac{q}{100 \cdot k_{vs}}\right)^2 + F_C, \text{ } \kappa \Pi \text{a ; } \text{ } \text{q, } \text{n/q}$$

