01-01.1
10.20.GB

SELF-ACTING
 PRESSURE REGULATORS

 RD 102 a RD 103

 RD 102 a RD 103}

Diagrams of flow through pressure reducing valve in relation to outlet press. drop

Valves DN 15 to $\mathbf{5 0}$ equipped with spring range $\mathbf{0 . 0 8}$ to $\mathbf{0 . 0 3} \mathbf{~ M P a}$

RD 102 V12 16/140-xx, inlet pressure 5,5 bar, outlet pressure adjusted to 2,5 bar, medium: water

Valve DN 25 equipped with springs for individual ranges

RD 102 V1x 16/140-25, inlet pressure 5,5 bar, medium: water

Maximal permissible operating pressures [Mpa]

Material	PN	Temperature [${ }^{\circ} \mathrm{C}$]										
		120	150	200	250	300	350	400	450	500	525	550
Brass 423135	16	1.60	1.14	---	---	---	---	---	---	---	---	---
Grey cast iron GG 25	16	1.60	1.44	---	---	---	---	---	---	---	---	---

Procedure for designing of pressure regulator (reducing valve)

Given: medium water, $10{ }^{\circ} \mathrm{C}$, static pressure at piping spot $p_{1}=900 \mathrm{kPa}\left(9 \mathrm{bar}\right.$), outlet pressure required $p_{2}=600$ kPa (6 bar), nominal pressure drop of the regulator $\Delta p_{\text {RIV }}=100 \mathrm{kPa}$ (1 bar), nominal flow rate $\mathrm{Q}_{\text {nом }}=10 \mathrm{~m}^{3} . \mathrm{h}^{-1}$

First, we calculate kv value of the regulator according to the following equation:

$$
\mathrm{Kv}=\frac{\mathrm{Q}_{\text {NOM }}}{\sqrt{\Delta \mathrm{p}_{\text {RIV }}}}=\frac{10}{\sqrt{1}}=10 \mathrm{~m}^{3} \cdot \mathrm{~h}^{-1}
$$

Precautionary additions for process tolerances (provided that flow rate Q was not oversized):

$$
K v s=(1,1 \text { to } 1,3) \cdot K v=(1,1 \text { to } 1,3) \cdot 10=11 \text { to } 13 \mathrm{~m}^{3} \cdot h^{-1}
$$

The calculation of $k v$ was this time carried out for $\Delta \mathrm{p}_{\text {RTV }}=1$ baron purpose. Such modification of parametres ensures sufficient performance of the valve when inlet pressure fluctuates. In reality, kv can be determined acc. To a real value of Δp but in that case it is recommended to apply a higher precautionary addition.

Now we choose the nearest Kvs value from those available in our catalogue, i.e. Kvs=12,5 m³. h^{-1}. This value corresponds to nominal size of DN 40.
Then we choose flanged regulator of outlet pressure DN 40, PN 16, with reducing pressure setting range of 0,3 MPa to $1,0 \mathrm{MPa}$, with manometer and we will get the following specification code:

RD 103 V14 16/140-40

Required value of outlet pressure p is set with adjusting screw according to values on manometer when piping the valve.

Basic scheme of piping outlet pressure regulator

With direct inlet of reducing pressure

With inlet of reducing pressure from extraction from pipeline

Procedure for designing of differential pressure regulator

Given: medium water, $70{ }^{\circ} \mathrm{C}$, static pressure at piping spot $800 \mathrm{kPa}(8 \mathrm{bar}), \Delta \mathrm{p}_{\text {AVaLL }}=110 \mathrm{kPa}(1,1 \mathrm{bar}), \Delta \mathrm{p}_{\text {ppetune }}=10 \mathrm{kPa}$ (0,1 bar), $\Delta p_{\text {APPLIANCE }}=20 \mathrm{kPa}(0,2 \mathrm{bar}), \Delta \mathrm{p}_{\text {valve }}=30 \mathrm{kPa}$ (0,3 bar), nominal flow rate $\mathrm{Q}_{\text {nom }}=12 \mathrm{~m}^{3} \cdot \mathrm{~h}^{-1}$

First, we calculate kv value of differential pressure regulator according to the following equations:
$\Delta p_{\text {RDT }}=\Delta p_{\text {AVALL }}-\Delta p_{\text {SET }}$, where

$\Delta p_{\text {Rот }}=110-(30+20+10)=50 \mathrm{kPa}(0,5 \mathrm{bar})$

$$
\text { Kvs }=\frac{Q_{\text {Nom }}}{\sqrt{\Delta p_{\text {RTv }}}}=\frac{12}{\sqrt{0,5}}=17 \mathrm{~m}^{3} \cdot \mathrm{~h}^{-1}
$$

Precautionary additions for process tolerances (provided that flow rate Q was not oversized):

```
Kvs=(1,1 to 1,3).Kv=(1,1 to 1,3) . 17 = 18,7 to 22,1 m}\mp@subsup{}{}{3}\cdot\mp@subsup{h}{}{-1
```

Now we choose the nearest higher Kvs value from those available in our catalogue, i.e. Kvs $=20 \mathrm{~m}^{3} . \mathrm{h}^{-1}$. This value corres-ponds to nominal size of DN 50.
Then we select a required differential pressure value of the regulator; which is given by adding of pressure drops of the protected pipe section
$\Delta p_{\text {SET }}=\Delta p_{\text {VAIVE }}+\Delta p_{\text {APPLANCE }}+\Delta p_{\text {prpeline }}=30+20+10=60 \mathrm{kPa}$
Then we choose screwed pressure regulator DN 50, PN 16, with reducing pressure setting range $0,04 \mathrm{MPa}$ to $0,1 \mathrm{MPa}$, with manometres and we will get the following specification code:

RD 102 D41 16/140-50

Differential pressure value $\Delta p_{\text {sET }}$ required is set by adjusting screw according to the values on the manometer when piping the valve.

Typical scheme of regulation loop with differential pressure regulator at secondary side

Self-acting control valves of differential pressure RD 102 D and RD 103 D are valves designed for keeping constant differential pressure or constant flow quantity (when orifice plate is used) at given device. Such function is ensured by diaphragm exposed to influence of inlet and outlet pressure of given device or throttling orifice plate. Diaphragm 's deflection transfers to valve plug and when pressure difference is increased, then valve closing is induced. Owing to pressure-balanced plug, value of differential pressure is not influenced by pressure ratios within valve.
Regulator can be equipped with manometers, from which it is possible to read actual values of inlet and outlet pressure and according to which required value of pressure difference can be adjusted (within range of used spring). Standard version is without manometers and regulator must be adjusted according to pressure values, possibly flow quantity values, measured directly at given device.
In case when required value of differential pressure is within range of two spring ranges, it is more suitable to choose the range with lower values to ensure sensitivity of regulator.
Connecting impulse pipes are supplied with valves as standard.

Application

These valves have a wide range of application in heating, water industry, air-conditioning and ventilation for temperature to 140 C and to max. inlet pressure value of 1 MPa .
They can be installed in regulation circuits, where constant differential pressure or flow at device without energy supply must be

Installation

Basic operating position of regulator is when body is above controlling head that points downwards. This position must be kept especially when reducing steam pressure and temperature above $80^{\circ} \mathrm{C}$. For liguids and gases that have lower temperatures, the valve can be installed in any position.

Process media

[^0]| Technical data | | |
| :---: | :---: | :---: |
| Series | RD 102 D | RD 103 D |
| Function | Self-acting control valve of differential pressure | |
| Nominal size range | DN 15 to 50 | |
| Nominal pressure | PN 16 | |
| Body material | Brass 423135 | Grey cast iron EN-JL 1040 |
| Plug material | Brass 423234 | |
| Plug - seat sealing | EPDM | |
| Diaphragm material | EPDM | |
| Process medium max. temperature | -5 to $130^{\circ} \mathrm{C}$, peaking up to $140^{\circ} \mathrm{C}$ | |
| Face to face dimensions | Section M4 acc. to DIN 3202 (4/1982) | Section 1 acc. to ČSN-EN 558-1 (3/1997) |
| Connection | Internal threaded coupling | Flange type B1 (with raised face) Acc. to ČSN-EN 1092-1 (4/2002) |
| Type of plug | Parabolic, pressure-balanced | |
| Flow characteristic | Linear | |
| Kvs values | 2 to $20 \mathrm{~m}^{3} / \mathrm{h}$ | |
| Adjustable range of diff. pressure values | 0.025 to $0.1 ; 0.08$ to $0.3 ; 0.2$ to $0.65 ; 0.3$ to 1.0 MPa | |

Tolerance of setting of edge range values is 10% from appropriate nominal edge value of the setting range

Kvs values						
DN $\left[\mathbf{m}^{3} /\right.$ hod $]$	2	20	25	32	40	50
Kvs	2.2	5	8	12.5	20	

Maximal permissible inlet pressure values for RD 10x D

Range [MPa]	$\mathbf{0 . 0 2 5 - 0 . 1}$	$\mathbf{0 . 0 8 - 0 . 3}$	$\mathbf{0 . 2 - \mathbf { 0 . 6 5 }}$	$\mathbf{0 . 3 - \mathbf { 1 . 0 }}$
$\mathbf{p}_{1 \text { max }}$	0.6	0.9	1.0	1.0

Dimensions and weights for RD $\mathbf{1 0 2}$								
$\mathbf{D N}$	\mathbf{C}	$\mathbf{L}_{\mathbf{1}}$ $\mathbf{m m}$	$\mathbf{L}_{\mathbf{2}}$	$\mathbf{L}_{\mathbf{3}}$	$\mathbf{V}_{\mathbf{1}}$	$\mathbf{V}_{\mathbf{2}}$	\mathbf{S}	\mathbf{m}
$\mathbf{m m}$	$\mathbf{m m}$	$\mathbf{m m}$	$\mathbf{m m}$	$\mathbf{k g}$				
$\mathbf{1 5}$	$\mathrm{G} 1 / 2$	85	9	12	50	25	27	3.1
$\mathbf{2 0}$	$\mathrm{G} 3 / 4$	95	11	14	55	25	32	3.2
$\mathbf{2 5}$	G 1	105	12	16	62	25	41	3.4
$\mathbf{3 2}$	$\mathrm{G} 11 / 4$	120	14	18	75	35	50	4.0
$\mathbf{4 0}$	$\mathrm{G} 11 / 2$	130	16	20	79	35	58	4.5
$\mathbf{5 0}$	G 2	150	18	22	89	42	70	5.5

Dimensions and weights for RD 103

DN	$\begin{gathered} D_{1} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{D}_{2} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} D_{3} \\ \mathrm{~mm} \end{gathered}$	nxd mm	$\begin{gathered} \mathbf{a} \\ \mathbf{m m} \end{gathered}$	$\begin{gathered} \mathbf{f} \\ \mathbf{m m} \end{gathered}$	$\begin{gathered} \mathrm{L}_{1} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} \mathrm{V}_{1} \\ \mathrm{~mm} \end{gathered}$	$\begin{gathered} V_{2} \\ \mathrm{~mm} \end{gathered}$	$\begin{aligned} & \mathrm{m} \\ & \mathrm{~kg} \end{aligned}$
15	95	65	45	4×14	16x4	2	130	89	25	5.7
20	105	75	58		18		150	101	25	6.8
25	115	85	68				160	106	25	7.8
32	140	100	78	4×18			180	118	35	10.2
40	150	110	88			3	200	128	35	11.0
50	165	125	102		20		230	145	42	14.4

Valve complete specification No. for ordering

		XX	X X X	X X X	XX	/ XXX	- XX
1. Type of valve	Pressure reducing valve	RD					
2. Series	Valve made of brass - threaded		102				
	Valve made of grey cast iron - flanged		103				
3. Function	Differential pressure regulator			D			
4. Version	Without manometers			3			
	With manometers			4			
5. Reducing pressure	0.04 to 0.1 MPa			1			
setting range	0.08 to 0.3 MPa			2			
	0.2 to 0.65 MPa			3			
	0.3 to 1.0 MPa			4			
6. Nominal pressure PN	PN 16				16		
7. Max. operating temp. ${ }^{\circ} \mathrm{C}$						140	
8. Nominal size	DN						XX

Ordering example: Differential pressure regulator DN 25, PN 16, maximal temperature: $140{ }^{\circ} \mathrm{C}$, body material: brass, connection: internal thread G 1, with spring range 0.2 to 0.65 MPa is specified as follows: RD $\mathbf{1 0 2} \mathbf{~ D 3 3 - 1 6 / \mathbf { 1 4 0 - 2 5 }}$

LDM, spol. s r.o. Litomyšlská 1378 56002 Česká Třebová Czech Republic
tel.: +420 465502511
fax: +420 465533101
e-mail: sale@ldm.cz

LDM Bratislava s.r.o.
Mierová 151
82105 Bratislava
Slovakia
tel.: +421 2 43415027-8
fax: +421 243415029
e-mail: Idm@ldm.sk

LDM, spol. s r.o. Office Praha
Podolská 50 14701 Praha 4 Czech Republic
tel.: +420 241087360 fax: +420 241087192 e-mail: sale@ldm.cz

LDM, spol. s r.o.
Office Ústí nad Labem
Ladova 2548/38
40011 Ústí nad Labem

- Severní Terasa Czech Republic
tel.: +420 602708257 e-mail: tomas.kriz@ldm.cz

LDM Armaturen GmbH
LDM, Polska Sp. z 0.o.
ul. Bednorza 1 40384 Katowice Poland
tel.: +48 327305633 fax: +48 327305233 mobile: +48 601354999 e-mail: Idmpolska@ldm.cz

Wupperweg 21
-51789 Lindlar Germany
tel.: +49 2266440333
ax: +49 2266440372
mobile: +49 1772960469
e-mail: Idmarmaturen@ldmvalves.com

000 "LDM Promarmatura"
Jubilejniy prospekt,
dom.6a, of. 601
141400 Khimki Moscow Region Russia
tel.: +74957772238
fax: +74956662212
mobile: +79032254333
e-mail: inforus@ldmvalves.com

TOO "LDM" Shakirova 33/1 kab. 103 100012 Karaganda Kazakhstan
tel.: +7 7212566936 fax: +77212 566936 mobile: +77017383679 e-mail: sale@ldm.kz

LDM servis, spol. s r.o. Litomyšlská 1378 56002 Česká Třebová Czech Republic
tel.: +420 465502 411-3
fax: +420 465531010
e-mail: servis@ldm.cz

DM - Bulgaria - OOD
z. k. Mladost 1
bl. 42, floor 12, app. 57
1784 Sofia
Bulgaria
tel.: +359 29746311
fax: +359 29746311
mobile: +359 888925766
e-mail: Idm.bg@ldmvalves.com

www.Idmvalves.com

LDM, reserves the right to modify or improve the designs or specifications of such products at any time without notice

[^0]: Valves series RD 102 D, RD 103 D are designed for gases and liquids such as air, water, low-pressure steam (it applies to RD 102 only) and other media compatible with material of the valve inner parts (especially body, plug and diaphragm). This valve is not suitable for oil. Medium acidity and alkalinity should not exceed range of pH 4.5 to 9.5
 To ensure long-term tightness of valve, producer recommends to pipe a strainer in front of the valve into pipeline.

