01-01.1
10.20.GB

# SELF-ACTING <br> PRESSURE REGULATORS <br> <br> RD 102 a RD 103 

 <br> <br> RD 102 a RD 103}


## Diagrams of flow through pressure reducing valve in relation to outlet press. drop

## Valves DN 15 to $\mathbf{5 0}$ equipped with spring range $\mathbf{0 . 0 8}$ to $\mathbf{0 . 0 3} \mathbf{~ M P a}$

RD 102 V12 16/140-xx, inlet pressure 5,5 bar, outlet pressure adjusted to 2,5 bar, medium: water


## Valve DN 25 equipped with springs for individual ranges

RD 102 V1x 16/140-25, inlet pressure 5,5 bar, medium: water


Maximal permissible operating pressures [Mpa]

| Material | PN | Temperature [ ${ }^{\circ} \mathrm{C}$ ] |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 120 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 525 | 550 |
| Brass 423135 | 16 | 1.60 | 1.14 | --- | --- | --- | --- | --- | --- | --- | --- | --- |
| Grey cast iron GG 25 | 16 | 1.60 | 1.44 | --- | --- | --- | --- | --- | --- | --- | --- | --- |

## Procedure for designing of pressure regulator (reducing valve)

Given: medium water, $10{ }^{\circ} \mathrm{C}$, static pressure at piping spot $p_{1}=900 \mathrm{kPa}\left(9 \mathrm{bar}\right.$ ), outlet pressure required $p_{2}=600$ kPa (6 bar), nominal pressure drop of the regulator $\Delta p_{\text {RIV }}=100 \mathrm{kPa}$ ( 1 bar), nominal flow rate $\mathrm{Q}_{\text {nом }}=10 \mathrm{~m}^{3} . \mathrm{h}^{-1}$

First, we calculate kv value of the regulator according to the following equation:

$$
\mathrm{Kv}=\frac{\mathrm{Q}_{\text {NOM }}}{\sqrt{\Delta \mathrm{p}_{\text {RIV }}}}=\frac{10}{\sqrt{1}}=10 \mathrm{~m}^{3} \cdot \mathrm{~h}^{-1}
$$

Precautionary additions for process tolerances (provided that flow rate Q was not oversized):

$$
K v s=(1,1 \text { to } 1,3) \cdot K v=(1,1 \text { to } 1,3) \cdot 10=11 \text { to } 13 \mathrm{~m}^{3} \cdot h^{-1}
$$

The calculation of $k v$ was this time carried out for $\Delta \mathrm{p}_{\text {RTV }}=1$ baron purpose. Such modification of parametres ensures sufficient performance of the valve when inlet pressure fluctuates. In reality, kv can be determined acc. To a real value of $\Delta p$ but in that case it is recommended to apply a higher precautionary addition.

Now we choose the nearest Kvs value from those available in our catalogue, i.e. Kvs=12,5 m³. $\mathrm{h}^{-1}$. This value corresponds to nominal size of DN 40.
Then we choose flanged regulator of outlet pressure DN 40, PN 16, with reducing pressure setting range of 0,3 MPa to $1,0 \mathrm{MPa}$, with manometer and we will get the following specification code:

## RD 103 V14 16/140-40

Required value of outlet pressure $p$ is set with adjusting screw according to values on manometer when piping the valve.

## Basic scheme of piping outlet pressure regulator

With direct inlet of reducing pressure


With inlet of reducing pressure from extraction from pipeline


## Procedure for designing of differential pressure regulator

Given: medium water, $70{ }^{\circ} \mathrm{C}$, static pressure at piping spot $800 \mathrm{kPa}(8 \mathrm{bar}), \Delta \mathrm{p}_{\text {AVaLL }}=110 \mathrm{kPa}(1,1 \mathrm{bar}), \Delta \mathrm{p}_{\text {ppetune }}=10 \mathrm{kPa}$ (0,1 bar), $\Delta p_{\text {APPLIANCE }}=20 \mathrm{kPa}(0,2 \mathrm{bar}), \Delta \mathrm{p}_{\text {valve }}=30 \mathrm{kPa}$ (0,3 bar), nominal flow rate $\mathrm{Q}_{\text {nom }}=12 \mathrm{~m}^{3} \cdot \mathrm{~h}^{-1}$

First, we calculate kv value of differential pressure regulator according to the following equations:
$\Delta p_{\text {RDT }}=\Delta p_{\text {AVALL }}-\Delta p_{\text {SET }}$, where

$\Delta p_{\text {Rот }}=110-(30+20+10)=50 \mathrm{kPa}(0,5 \mathrm{bar})$

$$
\text { Kvs }=\frac{Q_{\text {Nom }}}{\sqrt{\Delta p_{\text {RTv }}}}=\frac{12}{\sqrt{0,5}}=17 \mathrm{~m}^{3} \cdot \mathrm{~h}^{-1}
$$

Precautionary additions for process tolerances (provided that flow rate Q was not oversized):

```
Kvs=(1,1 to 1,3).Kv=(1,1 to 1,3) . 17 = 18,7 to 22,1 m}\mp@subsup{}{}{3}\cdot\mp@subsup{h}{}{-1
```

Now we choose the nearest higher Kvs value from those available in our catalogue, i.e. Kvs $=20 \mathrm{~m}^{3} . \mathrm{h}^{-1}$. This value corres-ponds to nominal size of DN 50.
Then we select a required differential pressure value of the regulator; which is given by adding of pressure drops of the protected pipe section
$\Delta p_{\text {SET }}=\Delta p_{\text {VAIVE }}+\Delta p_{\text {APPLANCE }}+\Delta p_{\text {prpeline }}=30+20+10=60 \mathrm{kPa}$
Then we choose screwed pressure regulator DN 50, PN 16, with reducing pressure setting range $0,04 \mathrm{MPa}$ to $0,1 \mathrm{MPa}$, with manometres and we will get the following specification code:

## RD 102 D41 16/140-50

Differential pressure value $\Delta p_{\text {sET }}$ required is set by adjusting screw according to the values on the manometer when piping the valve.

Typical scheme of regulation loop with differential pressure regulator at secondary side



# RD 102 V RD 103 V 

Self-acting control valve of outlet pressure

## DN 15 to 50 <br> PN 16

Self-action control valves of outlet pressure RD 102 V and RD 103 V are valves designed for medium pressure reducing and keeping it at required value. Such function is ensured by diaphragm exposed to infuence of observed pressure from one side and controlled by spring from the other side. Diaphragm 's deflection transfers to valve plug and when pressure drops in relation to increase of medium bleeding, then closing of valve is induced. Owing to pressure-balanced plug, value of outlet pressure is not influenced by changes of inlet pressure value.
Regulator is equipped with manometers, according to which required outlet pressure value can be directly adjusted (within range of used spring) and read its actual value when operating.
In case when required value of outlet pressure is within range of two spring ranges, it is more suitable to choose the range with lower values to ensure sensitivity of regulator.
Version with inlet of reducing pressure from extraction from pipeline is supplied with impulse pipe.

## Application

These valves have a wide range of application in heating, water industry, air-conditioning and ventilation for temperature to $140^{\circ} \mathrm{C}$. They can be installed in regulation circuits, where reduction of medium pressure must be secured without the necessity of application of any other measuring device and energy supply.

## Process media

Valves series RD 102 V, RD 103 V are designed for gases and liquids such as air, water, low-pressure steam (it applies to RD 102 only) and other media compatible with material of the valve inner parts (especially body, plug and diaphragm). This valve is not suitable for oil. Medium acidity and alkalinity should not exceed range of HH 4.5 to 9.5
To ensure long-term tightness of the valve, producer recom-mends to pipe a strainer in front of the valve into pipeline. In application where increase of reducing pressure above adjusted value could cause a considerable breakdown of a system, producer recommends to pipe a safety valve behind pressure regulator into pipeline.

## Installation

Basic operating position of regulator is when body is above controlling head that points downwards. This position must be kept especially when reducing steam pressure and temperature above $80^{\circ} \mathrm{C}$. For liguids and gases that have lower temperatures, the valve can be installed in any position.

| Technical data |  |  |
| :---: | :---: | :---: |
| Series | RD 102 V | RD 103 V |
| Function | Self-acting control valve of outlet pressure |  |
| Nominal size range | DN 15 to 50 |  |
| Nominal pressure | PN 16 |  |
| Body material | Brass 423135 | Grey cast iron EN-JL 1040 |
| Plug material | Brass 423234 |  |
| Plug - seat sealing | EPDM |  |
| Diaphragm material | EPDM |  |
| Process medium max. temperature | -5 to $130^{\circ} \mathrm{C}$, peaking up to $140^{\circ} \mathrm{C}$ |  |
| Face to face dimensions | Acc. to DIN 3202 (4/1982) - M4 | Acc. to ČSN-EN 558-1 (3/1997) |
| Connection | Internal threaded coupling | Flange type B1 (with raised face) |
|  | Acc. to ČSN-EN ISO 228-1 (9/2003) | Acc. to ČSN-EN 1092-1 (4/2002) |
| Type of plug | Parabolic, pressure-balanced |  |
| Flow characteristic | Linear |  |
| Kvs values | 2 to $20 \mathrm{~m}^{3} /$ hour |  |
| Adjustable range of outlet pressure values | 0.04 to $0.1 ; 0.08$ to $0.3 ; 0.2$ to $0.65 ; 0.3$ to 1.0 MPa |  |

Tolerance of setting of edge range values is $10 \%$ from appropriate nominal edge value of the setting range.

| Kvs values |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| DN | $\mathbf{1 5}$ | 20 | $\mathbf{2 5}$ | 32 | 40 | 50 |
| Kvs $\left[\mathrm{m}^{\mathbf{3}} / \mathrm{h}\right]$ | 2 | 3.2 | 5 | 8 | 12.5 | 20 |

Maximal permissible inlet pressure values for RD 10x V

| Range [MPa] | $\mathbf{0 . 0 2 5 - 0 . 1}$ | $\mathbf{0 . 0 8 - 0 . 3}$ | $\mathbf{0 . 2 - \mathbf { 0 . 6 5 }}$ | $\mathbf{0 . 3 - \mathbf { 1 . 0 }}$ |
| :--- | :---: | :---: | :---: | :---: |
| $\mathbf{p}_{\text {max }}$ | 0.6 | 0.9 | 1.2 | 1.6 |

Dimensions and weights for RD 102

| $\mathbf{D N}$ | $\mathbf{C}$ | $\mathbf{L}_{1}$ <br> $\mathbf{m m}$ | $\mathbf{L}_{2}$ <br> $\mathbf{m m}$ | $\mathbf{L}_{3}$ <br> $\mathbf{m m}$ | $\mathbf{V}_{\mathbf{1}}$ <br> $\mathbf{m m}$ | $\mathbf{V}_{2}$ <br> $\mathbf{m m}$ | $\mathbf{s}$ <br> $\mathbf{m m}$ | $\mathbf{m}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{k g}$ |  |  |  |  |  |  |  |  |

Dimensions and weights for RD 103

| $\mathbf{D N}$ | $\mathbf{D}_{\mathbf{1}}$ <br> $\mathbf{m m}$ | $\mathbf{D}_{\mathbf{2}}$ <br> $\mathbf{m m}$ | $\mathbf{D}_{\mathbf{3}}$ <br> $\mathbf{m m}$ | $\mathbf{n x d}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{m m}$ | $\mathbf{a}$ | $\mathbf{f}$ | $\mathbf{L}_{\mathbf{1}}$ | $\mathbf{V}_{\mathbf{1}}$ | $\mathbf{V}_{\mathbf{2}}$ | $\mathbf{m}$ |
| $\mathbf{m m}$ | $\mathbf{k g}$ |  |




Valve complete specification No. for ordering

|  |  | XX | XXX | XXX | xx | xxx | XX |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1. Type of valve | Pressure reducing valve | RD |  |  |  |  |  |
| 2. Series | Valve made of brass - threaded |  | 102 |  |  |  |  |
|  | Valve made of grey cast iron - flanged |  | 103 |  |  |  |  |
| 3. Function | Outlet pressure regulator |  |  | v |  |  |  |
| 4. Version | With direct inlet of reducing pressure |  |  | 1 |  |  |  |
|  | With inlet of reducing press. from extraction from pipeline |  |  | 2 |  |  |  |
| 5. Reducing pressure setting range | 0.04 to 0.1 MPa |  |  | 1 |  |  |  |
|  | 0.08 to 0.3 MPa |  |  | 2 |  |  |  |
|  | 0.2 to 0.65 MPa |  |  | 3 |  |  |  |
|  | 0.3 to 1.0 MPa |  |  | 4 |  |  |  |
| 6. Nominal pressure PN | PN 16 |  |  |  | 16 |  |  |
| 7. Max. operating temp. ${ }^{\circ} \mathrm{C}$ |  |  |  |  |  | 140 |  |
| 8. Nominal size | DN |  |  |  |  |  | XX |

Ordering example: Outlet pressure regulator DN 25, PN 16, maximal temperature: $140^{\circ} \mathrm{C}$, body material: brass, connection: internal thread G 1, with direct inlet of reducing pressure, with spring range 0.2 to 0.65 MPa is specified as follows: RD 102 V13-16/140-25

LDM, spol. s r.o. Litomyšlská 1378 56002 Česká Třebová Czech Republic
tel.: +420 465502511
fax: +420 465533101
e-mail: sale@ldm.cz

LDM Bratislava s.r.o.
Mierová 151
82105 Bratislava
Slovakia
tel.: +421 2 43415027-8
fax: +421 243415029
e-mail: Idm@ldm.sk

LDM, spol. s r.o. Office Praha
Podolská 50 14701 Praha 4 Czech Republic
tel.: +420 241087360 fax: +420 241087192 e-mail: sale@ldm.cz

LDM, spol. s r.o.
Office Ústí nad Labem
Ladova 2548/38
40011 Ústí nad Labem

- Severní Terasa Czech Republic
tel.: +420 602708257 e-mail: tomas.kriz@ldm.cz

LDM Armaturen GmbH
LDM, Polska Sp. z 0.o.
ul. Bednorza 1 40384 Katowice Poland
tel.: +48 327305633 fax: +48 327305233 mobile: +48 601354999 e-mail: Idmpolska@ldm.cz

Wupperweg 21
-51789 Lindlar Germany
tel.: +49 2266440333
ax: +49 2266440372
mobile: +49 1772960469
e-mail: Idmarmaturen@ldmvalves.com

000 "LDM Promarmatura"
Jubilejniy prospekt,
dom.6a, of. 601
141400 Khimki Moscow Region Russia
tel.: +74957772238
fax: +74956662212
mobile: +79032254333
e-mail: inforus@ldmvalves.com

TOO "LDM" Shakirova 33/1 kab. 103 100012 Karaganda Kazakhstan
tel.: +7 7212566936 fax: +77212 566936 mobile: +77017383679 e-mail: sale@ldm.kz

LDM servis, spol. s r.o. Litomyšlská 1378 56002 Česká Třebová Czech Republic
tel.: +420 465502 411-3
fax: +420 465531010
e-mail: servis@ldm.cz

DM - Bulgaria - OOD
z. k. Mladost 1
bl. 42, floor 12, app. 57
1784 Sofia
Bulgaria
tel.: +359 29746311
fax: +359 29746311
mobile: +359 888925766
e-mail: Idm.bg@ldmvalves.com

## www.Idmvalves.com

LDM, reserves the right to modify or improve the designs or specifications of such products at any time without notice


