Calculation and selection - Self-acting temperature controller

Initial data

10.00 m3/h	Estimated water flow rate	7.00 bar	Pressure before the control valve
90 °C	The maximum water temperature at the place of installation of the valve	0.50 bar	Permissible pressure drop on the control valve
50 °C	Temperature maintained by the regulator	1.00 bar	Pressure drop on the controlled section
		0.50 bar	Pressure loss on other elements of the controlled section excluding pressure loss on the valve

Calculation results

$[10.00 \text{ m3/h}] / [0.50 \text{ bar}]^{0.5} = 14.14 \text{ [m3/h]}$	Required Kv value
0.00000005 * [90 °C]^3.658 = 0.70 [bar]	Absolute saturation vapor pressure of water at temperature 90°C
0.2*(7.00+1-0.70) = 1.46 [bar]	Lower limit without cavitation pressure loss at the valve
0.6*(7.00+1-0.70) = 4.38 [bar]	Upper limit without cavitation pressure loss at the valve
0.50 [bar] <= 1.46 [bar]	There will be no cavitation on the valve
([G 10.00 m3/h] / [Kvs 25 m3/h])^2 = 0.16 [bar]	Pressure drop on a fully open valve with Kvs=25 [m3/h] at flow rate 10.00 [m3/h]
[1.00 bar] *1.2 = 1.20 [bar]	The maximum possible pressure drop across the valve, taking into account 20% reserve
[10.00 m3/h] / {3600 *3.14 *([DN40] *0.001)^2 *0.25} = = 2.2 [m/s]	The flow rate is within normal limits V < $3.0[m/s]$

Selection result : Self-acting temperature controller

LDM : RT 122 T

Czechia

closes when the temperature increases

DN 40 [mm]	Nominal valve diameter
Kvs 25 [m3/h]	Flow coefficient
PN 25 [bar]	Nominal pressure
25 [bar]	The maximum pressure difference between the inlet and outlet of the valve at which the thermostatic actuator will be able to close the valve
dT 2.0 150°C	Operating temperature
dT 25 70°C	Temperature maintained by the regulator
cast iron	Body material
57 %	The percentage of the opening of the valve gate at which $Kv=14.14 \text{ [m3/h]}$, and the pressure loss on the valve will be 0.50 [bar] when passing the calculated flow rate 10.00 [m3/h]

