

Calculation and Selection - Pressure reduction controller

Initial data

10.00 m3/h	Estimated water flow rate	5.00 bar	Pressure before controller
50 °C	Maximum water temperature at the installation place	1.00 bar	Allowable pressure loss across controller
		4.00 bar	The pressure that will be maintained by the controller

Calculation results

$[10.00 \text{ m3/h}] / [1.00 \text{ bar}]^0.5 = 10.00 [\text{m3/h}]$	Required Kv value
Tmax 50°C <= 70°C	There will be no cavitation on the controller
$([G 10.00 m3/h] / [Kvs 16 m3/h])^2 = 0.39 [bar]$	Pressure drop across a fully open controller with Kvs=16 [m3/h] with flow rate 10.00 [m3/h] $$
[10.00 m3/h] / {3600 *3.14 *([DN32] *0.001)^2 *0.25} = = 3.5 [m/s]	High flow rate will result in increased controller noise $V > 3.0 [m/s]$

Selection result: Pressure reduction controller

Danfoss: AFD VFG 2

Denmark

maintains a set pressure at the point of connection of the impulse line

closes when the pressure increases

normally open

DN 32 [mm] Nominal controller diameter

Kvs 16 [m3/h] Flow coefficient

PN 40/25/16 [bar] Nominal pressure

dP 1.0...6.0 [bar] Pressure setting range

dT 5 ... 140°C Operating temperature

cast iron Body material

63 % The percentage of the opening of the controller gate at

which Kv=10.00 [m3/h], and the pressure loss on the controller will be 1.00 [bar] when passing the calculated

flow rate 10.00 [m3/h]

