

Calculation and Selection - Pressure Reducing Valve

Initial data

3.00 m3/h	Estimated water flow rate	4.00 bar	Pressure before valve
15 °C	Maximum water temperature at the installation place	1.50 bar	Allowable pressure loss across valve
		2.50 bar	The pressure that will be maintained by the valve

Calculation results

 $[3.00 \text{ m3/h}] / [1.50 \text{ bar}] ^0.5 = 2.45 \text{ [m3/h}]$ Required Kv value $\text{Tmax } 15^{\circ}\text{C} <= 70^{\circ}\text{C}$ There will be no cavitation on the valve $([G \ 3.00 \ \text{m3/h}] / [\text{Kvs } 5.80 \ \text{m3/h}])^2 = 0.27 \text{ [bar]}$ Pressure drop across a fully open valve with Kvs=5.80 [m3/h] with flow rate $3.00 \ \text{[m3/h]}$ [3.00 m3/h] / $\{3600 \ ^*3.14 \ ^*([DN25] \ ^*0.001)^2 \ ^*0.25\} =$ The flow rate is within normal limits V < 3.0[m/s] $= 1.7 \ \text{[m/s]}$

Selection result : Pressure reduction valve

Honeywell - Resideo: D06F

United States

maintains the set pressure at the regulator outlet

closes when the pressure increases

normally open

DN 25 [mm] Nominal valve diameter

Kvs 5.80 [m3/h] Flow coefficient

PN 25 [bar] Nominal pressure

dP 1.5...6.0 [bar] Pressure setting rangedT 2 ... 70°C Operating temperature

brass Body material

42 % The percentage of the opening of the valve gate at which

Kv=2.45 [m3/h], and the pressure loss on the valve will be 1.50 [bar] when passing the calculated flow rate 3.00

[m3/h]

