Calculation and Selection - Pressure Reducing Valve

Initial data

$\mathbf{3 . 0 0} \mathbf{~ m 3 / h}$	Estimated water flow rate	$\mathbf{4 . 0 0}$ bar	Pressure before valve
$\mathbf{1 5}^{\circ} \mathbf{C}$	Maximum water temperature at the installation place	$\mathbf{1 . 5 0}$ bar	Allowable pressure loss across valve

Calculation results

$[3.00 \mathrm{~m} 3 / \mathrm{h}] /[1.50 \mathrm{bar}]^{\wedge} 0.5=2.45[\mathrm{~m} 3 / \mathrm{h}]$	Required Kv value
$\mathrm{Tmax} 15^{\circ} \mathrm{C}<=70^{\circ} \mathrm{C}$	There will be no cavitation on the valve
$([\mathrm{G} 3.00 \mathrm{~m} 3 / \mathrm{h}] /[\mathrm{Kvs} 5.80 \mathrm{~m} 3 / \mathrm{h}])^{\wedge} 2=0.27[\mathrm{bar}]$	Pressure drop across a fully open valve with Kvs $=5.80[\mathrm{~m} 3 / \mathrm{h}]$ with flow rate $3.00[\mathrm{~m} 3 / \mathrm{h}]$
$[3.00 \mathrm{~m} 3 / \mathrm{h}] /\left\{3600 * 3.14^{*}([\mathrm{DN} 25] * 0.001)^{\wedge} 2 * 0.25\right\}=$ The flow rate is within normal limits $\mathrm{V}<3.0[\mathrm{~m} / \mathrm{s}]$ $=1.7[\mathrm{~m} / \mathrm{s}]$	

Selection result : Pressure reduction valve

