Calculation and Selection of Expansion Tanks

Initial data

$\mathbf{5 0 0 0}$ liters	Volume of water in the heating system
$\mathbf{8 0}^{\circ} \mathbf{C}$	The average hot water temperature in the calculation mode

4.9 bar
 10.0 bar

Static pressure in the heating system
Maximum pressure for the heating system at the connection point of the expansion tank

Calculation results

```
1003-0.156 *80-0.0029 *80^2 = 972 [kg/m3]
(998-972)/998=0.026 [liters/kg]
1.1 *0.026 *5000 = 143 [liters]
0.025 *5000 = 125 [liters]
143 + 125 = 268 [liters]
0.3 + 4.9 = 5.2 [bar]
(10.0 + 1.0) / ( 1.0 + 143 / 268 *
*{[10.0+1] / [10.0-5.2] -1.0 } ) -1.0 = 6.8 [bar]
143 *((10.0+1.0) / (10.0-5.2)) = 328 [liters]
268 *((10.0+1.0) / (10.0-5.2) ) = 614 [liters]
```

$(998-972) / 998=0.026[$ liters $/ \mathrm{kg}]$
$1.1 * 0.026 * 5000=143$ [liters]
$0.025 * 5000=125$ [liters]
$143+125=268$ [liters]
$0.3+4.9=5.2$ [bar]
$(10.0+1.0) /(1.0+143 / 268$ * *\{ [10.0+1] / [10.0-5.2] -1.0 \}) $-1.0=6.8$ [bar]

143 *((10.0+1.0) / (10.0-5.2)) = 328 [liters]
268 *((10.0+1.0) / (10.0-5.2)) = 614 [liters]

Water density in the heating system $\mathrm{t}=80^{\circ} \mathrm{C}$
Specific increase in water volume when heated from 15 to $80^{\circ} \mathrm{C}$

Useful capacity of the tank, taking into account 10% of the reserve

Reserve capacity to compensate for minor leaks in the heating system

Total useful volume of the tank

Initial gas pressure in the tank
Initial operating pressure

Minimum tank volume
The recommended volume of the tank, taking into account the reserve capacity

Reflex: Reflex G

Pressure adjustment guide

[^0]
[^0]: 1. Before connecting the tank to the heating system, set the initial pressure in the gas space to [5.2 bar]. Inflate the tank by using a compressor through the nipple in the housing.
 2. Connect the tank to the heating system and slowly fill it with water until the pressure in the system equals the pressure in the expansion tank's gas space [5.2 bar].
 3. Turn on the circulation pump and continue filling the system with water until the initial operating pressure is established at the connection point of the expansion tank [6.8 bar]. At this time, the expansion tank will receive a reserve operating water volume [125 liters].
 4. After connecting the heat source and transitioning to maximum temperature operation, each kilogram of heat transfer fluid will increase in volume by the specific volume increase [0.026 liters $/ \mathrm{kg}$], and heat transfer fluid equal to the useful capacity of the tank 143 [liters] will enter the expansion tank. At this point, the pressure in the tank will increase to the maximum operating pressure [10.0 bar].
