Content
Length related mass and support distances for steel pipes for plant constructions (standard values) 18.1
Support distances in building services for pipes made of steel, copper, plastic (standard values) 18.2
Support distances for plastic pipes (standard values according to producer) 18.3
Weight per support (Calculation, Simulation and Safety Coefficient S) 18.4
Length variation of pipes and coefficient of linear expansion 18.5
Minimum length for bending leg L_{A} of warming pipes (standard values) 18.6
Fixed point force for pipes made of steel (approximated values) 18.7
Material characteristics and restrictions for static loadings 18.8
Corrosion protection 18.9

List of references

[1] Wagner, Walter: Rohrleitungstechnik, Vogel-Buchverlag, 10. Auflage, 2008
[2] Wagner, Walter: Planung im Anlagenbau, Vogel-Buchverlag, 2. Auflage, 2003
[3] Wagner, Walter: Festigkeitsberechnungen im Apparate und Rohrleitungsbau, Vogel-Buchverlag, 7. Auflage, 2007
[4] DVS 2210-01: Industrierohrleitungen aus thermoplastischen Kunststoffen for additional advice on support distances determination for plastic pipes

Symbols			Materials	
c	material property	[-]	A	Austenitic steel
Da	outer diameter	[mm]	Cu	Copper
Di	inner diameter	[mm]	F (Fe)	Ferritic Steel
DN	nominal diameter	[mm]	HDPE	Polyethylene with high density
e	wall thickness	[mm]	M	Martensitic steel
E	modulus of elasticity	[$\mathrm{kN} / \mathrm{mm}^{2}$]	PE	Polyethylene
FB	fixed point force from bending	[kN]	PP	Polypropylene
FF	spring force (at compensator)	[kN]	PVC	Polyvinyl chloride
FH	hydrostatic force	[kN]	PVDF	Polyvinyl denfluoride
FP	fixed point force (total)	[kN]	St	Steel
FR	frictional force (in slide supports)	[kN]	VA	Stainless Steel
G	weight	[kN]		
G'	weight / length	[kN / m]		
KM	correction coefficient $=$ f (medium)	[-]		
KR	correction coefficient $=$ f (row of pipes)	[-]		
L	length of expanding pipe leg	[m]		
LA	length of bending pipe leg	[m]		
LSt	Support distance of pipe	[m]		
$\mathrm{m}^{\text {' }}$	mass / length	[kg / m]		
p	internal pressure	[bar]		
Re	yield strength	[$\mathrm{N} / \mathrm{mm}^{2}$]		
S	safety coefficient	[-]		
T	Temperature	[${ }^{\circ} \mathrm{C}$]		
B	coefficient of thermal expansion	[mm/(m•k)]		

Length related mass and support distances for steel pipes for plant constructions (standard values)

Note

(1) The given standard values are valid for steel pipes with normal thickness and up to a temperature of $400^{\circ} \mathrm{C}$. the length related mass is larger when the steel is thicker.
In case of weaker thickness (often in the range of stainless steel) the admissable support distance decreases.
(2) An analysis of elasticity shows the admissibility of the choosen support distance.

In case of exceeding the stated standard values and/ or constraints like high temperatures or influence of vibrations, a special engeneering proof incl. an analysis of elasticity is necessary.

Sources

Wagner, Walter: Rohrleitungstechnik, Vogel-Buchverlag, 10. Auflage, 2008; DIN EN 13480-3: Metallische industrielle Rohrleitungen, 2002

Support distances in building services for pipes made of steel, copper, plastic (standard values)

Nominal Diameter [DN]	Nominal Diameter [Zoll]	Outside-Ø [mm]	SIKLA-Recommandation Pipes filled with water with insulation ${ }^{1)}$			DIN 1988-2 Pipes filled with water			
			Steel Pipe	Steel Pipe	Cu-Pipe	Steel Pipe	Cu-Pipe	PVC-Pipe	
			$\begin{aligned} & \text { EN } 10220 \\ & \text { DIN } 2448 \\ & \text { DIN } 2458 \end{aligned}$	$\begin{aligned} & \text { EN } 10255 \\ & \text { DIN } 2440 \end{aligned}$	$\begin{aligned} & \text { EN } 1057 \\ & \text { DIN } 1786 \end{aligned}$	$\begin{aligned} & \text { EN } 10255 \\ & \text { DIN } 2440 \end{aligned}$	$\begin{aligned} & \text { EN } 1057 \\ & \text { DIN } 1786 \end{aligned}$	$\begin{gathered} \text { at } \\ 20^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { at } \\ 40^{\circ} \mathrm{C} \end{gathered}$
		12.0			1.00		1.25		
10		13.5	1.00						
		15.0			1.10		1.25		
		16.0						0.80	0.50
10	3/8"	17.2		1.20		2.25			
		18.0			1.20		1.50		
15		20.0	1.20					0.90	0.60
15	1/2"	21.3		1.50		2.75			
		22.0			1.30		2.00		
20		25.0	1.40					0.95	0.65
20	3/4"	26.9		2.00		3.00			
		28.0			1.50		2.25		
25		30.0	1.80						
		32.0						1.05	0.70
25	1"	33.7		2.50		3.50			
		35.0			1.60		2.75		
32		38.0	2.20						
		40.0						1.05	0.70
		42.0			1.80		3.00		
32	1 1/4"	42.4		2.90		3.75			
40		44.5	2.40						
40	11/2"	48.3		3.30		4.25			
		50.0						1.40	1.10
		54.0			2.00		3.50		
50		57.0	3.10						
50	2"	60.3		4.00		4.75			
		63.0						1.50	1.20
		64.0					4.00		
		75.0						1.65	1.35
65		76.1	3.30				4.25		
65	2 1/2"	76.1		4.75		5.50			
80		88.9	4.20				4.75		
80	3"	88.9		5.25		6.00			
		90.0						1.80	1.50
100		108.0	4.50				5.00		
100	4"	114.3		5.80		6.00			
		110.0						2.00	1.70
125		133.0	5.10				5.00		
125	5"	139.7		6.50		6.00			
		140.0						2.25	1.95
150		159.0	5.80				5.00		
		160.0						2.40	2.10
150	6 "	168.3		7.20					
200	8"	219.1	7.80						

1) 100% - Insulation with $100 \mathrm{~kg} / \mathrm{m}^{3}$ and 1 mm steel sheat for pipes with normal thickness.

Support distances for plastic pipes (standard values according to producer)

Pipes made of HDPE or PP

Medium	KM
gas	1.3
1 <density $\left[\mathrm{g} / \mathrm{cm}^{3}\right] \leq 1.8$	0.8

Pipe raw	KR	
	HDPE	PP
1 and 2	1.0	1.1
3	1.1	1.45
4	1.25	1.65
5	1.45	

$$
\mathrm{L}_{\mathrm{St}}=\mathrm{L}_{\mathrm{St}}{ }^{*} \cdot \mathrm{KM} \cdot \mathrm{KR}
$$

Example:

HDPE; DN 100; $T=40^{\circ} \mathrm{C}$; bulk material; Pipe raw 3
$L_{S t}=1.05 m \cdot 0.8 \cdot 1.1 \approx 0.9 m$

Weight per support (Calculation, Simulation and Safety Coefficient S)

Example:

$D_{a}=168.3 \mathrm{~mm}$, DIN 2448, $L_{s t}=4 \mathrm{~m}$
$m^{\prime}=38 \mathrm{~kg} / \mathrm{m} \approx 0.38 \mathrm{kN} / \mathrm{m}=\mathrm{G}^{\prime}$
$G_{\text {thoer }}=0.38 \mathrm{kN} / \mathrm{m} \cdot 4 \mathrm{~m} \approx 1.5 \mathrm{kN}$

Explanation:

For the static dimensioning of a pipe support, the weight which has to be carried by the clamp has to be calculated.
The length of pipe sections, assigned hypothetically, correspond with the support distance L_{st}.

For this reason, in practice a security coefficient S should be taken into consideration. Based on the simulation approach, S will be rated 1.5... 2.5 depending on the application case.

$$
G_{\text {pract }}=G^{\prime} \cdot L_{\text {st }} \cdot S
$$

Example:

$D_{a}=168.3 \mathrm{~mm}$, DIN 2448
$L_{s t}=4 \mathrm{~m}, \mathrm{G}^{\prime}=0.38 \mathrm{kN} / \mathrm{m}$
$S=2.0$
$G_{\text {pract }}=0.38 \mathrm{kN} / \mathrm{m} \cdot 4 \mathrm{~m} \cdot 2 \approx 3 \mathrm{kN}$

Note:

- According to EN 13480 at load concentration points (e.g. valves, vertical pipe sections) additional supports must be provided.

Length variation of pipes and coefficient of linear expansion

Graphic illustration of the variation in length

$\Delta T=T_{\text {operation }}-T_{\text {installation }}$

Example:

PE-Pipe; $L=10 \mathrm{~m} ; T_{\text {operation }}=70^{\circ} \mathrm{C} ; T_{\text {installation }}=20^{\circ} \mathrm{C}$
$\Delta T=70^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}=50 \mathrm{~K}$
graphic illustration:
$\Delta T=50 \mathrm{~K} \rightarrow P E \rightarrow L=10 \mathrm{~m} \rightarrow \Delta L=100 \mathrm{~mm}$

$$
\Delta \mathrm{L}=\mathrm{L} \cdot \beta \cdot \Delta \mathrm{~T}
$$

mathematical solution:
$\Delta L=10 \mathrm{~m} \cdot 0,2 \frac{\mathrm{~mm}}{\mathrm{~m} \cdot \mathrm{~K}} \cdot 50 \mathrm{~K}=100 \mathrm{~mm}$

Coefficient of linear expansion							
material	$\begin{gathered} \beta \\ {[\mathrm{mm} /(\mathrm{m} \cdot \mathrm{~K})]} \end{gathered}$						A
					,		
HDPE, PE	0.200	$\stackrel{5}{5}$	-				
PB, PP	0.150						
PVDF	$0.12 \ldots 0.18$	$\frac{E}{E}$			-		F
PVC	0.080	${ }_{\infty}^{E}$		-			
A = Steel (VA), Cu	0.017	0.010					
$\mathrm{F}=$ Steel (ferr.)	0.012			100	0		
					$T\left[{ }^{\circ} \mathrm{C}\right]$	\rightarrow	

Note:

- As temperature rises, the coefficient of linear expansion increases.
For this reason, calculations including for the integral linear expansion coefficient have to be used where temperatures exceed $200^{\circ} \mathrm{C}$.

Minimum length for bending leg $\mathrm{L}_{\mathbf{A}}$ of warming pipes (standard values)

Pipes made of steel (ferritic, austenitic)

Example:

$L=18 \mathrm{~m} ; \mathrm{DN} 150\left(D_{a}=168.3 \mathrm{~mm}\right) ; T=120^{\circ} \mathrm{C}$
Read: Minimum length for bending legs: $L_{A}=3.1 \mathrm{~m}$

Valid for L-bending, U-bending and Z-bending according to diagram.

RPipe made from plastic

material	C
HDPE	26.0
MEPLA	33.0
PP	30.0
PVC	33.5
PVDF	21.6

$$
L_{A}=C \cdot \sqrt{D_{a} \cdot \Delta L}
$$

1.) Calculate linear expansion: $\Delta L=72 \mathrm{~mm}$
2.) $L_{A}=30 \cdot \sqrt{160 \mathrm{~mm} \cdot 72 \mathrm{~mm}}=3200 \mathrm{~mm}=3.2 \mathrm{~m}$

Example:

$P P ; L=8 \mathrm{~m} ; D_{a}=160 \mathrm{~mm} ; T=80^{\circ} \mathrm{C}$

Fixed point force for pipes made of steel (approximated values)

Fixed point forces resulting from natural bends (Pipe expansion moves the bending leg)

Example:

Steel Pipe DIN 2458, L = 15 m
$L_{A}=3 \mathrm{~m} ; D_{a}=101.6 \mathrm{~mm} ; T=120^{\circ} \mathrm{C}$
$\rightarrow \Delta T=100 \mathrm{~K} \rightarrow \Delta L=18 \mathrm{~mm}$
$\mathrm{FB}=\frac{18 \mathrm{~mm}}{10 \mathrm{~mm}} \cdot 0,25 \mathrm{kN}=0.45 \mathrm{kN}$

Note:

Fixed point force FP is larger than FB, because frictional forces of slide bearings have to be added: $F P=F B+F R$

Fixed point force at axial compensators

$$
F P=F H+F F+F R
$$

Example:

Axial compensator DN 100; $p=16$ bar
\rightarrow hydrostatic force $\mathrm{FH} \approx 15 \mathrm{kN}$

Note:

Normally FH constitutes the main part of fix point force.
But the complete fix point force FP is larger because the spring force of compensator (FF) and the frictional force of sliders (FR) have to be added.

Construction of an axial compensator (expansion joint) with flange

For exact calculation of hydrostatic force FH, the axial compensator (pipe expansion joint) has to be considered.

Material characteristics and restrictions for static loadings

Note:
The specified values for Re are material features.
Safety factors have to be considered additionally.
For hot-dip galvanized products the maximum temperature limit is $250^{\circ} \mathrm{C}$.
S235JR (St 37) shouldn't be used at temperatures over $300^{\circ} \mathrm{C}$.
Selecting the material, the creep-strength has to be considered when
extraordinary high temperatures occur.

M = martensic
F = ferritic
A = austenitic

	Yield point $\mathrm{Re}\left[\mathrm{N} / \mathrm{mm}^{2}\right]$ at a							
material	50	200	250	300	350	400	450	500
S235JR (St 37)	235	161	143	122	-	-	-	-
1.4301	177	127	118	110	104	98	95	92
1.4401	196	147	137	127	120	115	112	110
1.4571	202	167	157	145	140	135	131	129

The yield point values for S235JR are valid for thickness up to 16 mm , according to AD 2000 MB W1.

Caution!

- Because the strength features of steel decreases considerably at high temperature, reduced values have to be considered in the calculation. Interim values have to be interpolated.

Restrictions for dimensioning a simply supported beam

Corrosion protection

1. Corrosivity catagory acc. DIN EN ISO 12944-2

corrosivity catagory	corrosivity catagory	Outdoor (typical Examples)	Indoor (typical Examples)
C1	Very low	not applicable (outdoor min. C2 requirement)	Indoor dry conditions with a neutral environment. e.g. offices, shops, schools and hotels
C2	Low: minor	Atmosphere with low-level pollution. Mostly rural areas.	Unheated buildings where condensation can occur. e.g. warehouses, sports facilities
C3	Moderate	Town and industrial atmosphere. Moderate sulphur dioxide pollution. Coastal areas with low levels of atmospheric salt.	Production facilities with high humidity and moderate environmental pollution. e.g. food production plants, water treat- ment plants, dairies and breweries
C4	High	Industrial and coastal areas with moderate levels of atmospheric salt.	Chemical plants, swimming pools, boat sheds (above sea level)
C5-I (Industrial)	Very high	Industrial areas with high humidity and chemically aggressive atmospheres	Buildings or areas with almost permanent condensation or high levels of pollution
C5-M (Coastal)	Very high	Coastal and off-shore areas with high levels of atmospheric salt	Buildings or areas with almost permanent condensation or high levels of pollution

2. Coating or material selection in accordance with corrosivity category and intended use

			HCP = High Corrosion Protection = HCP Consistency at least as with hot dip metal coating	
Treatment	Electrogalvanising	Hot-dip galvanising		Zinc lamination coating
Medium	Electrolytic transfer of zinc ions	By means of temperature ($\geq 450^{\circ} \mathrm{C}$): dipping in fluid zinc		Anorganic layer of zinc- and alu-lamination
Process	Galvanising, discontinuous clip	Continuous sendzimir treatment	Hot-dipped galvanised	Coating and curing at ca. $200^{\circ} \mathrm{C}$
Norms	DIN 50961	DIN EN 10346	DIN EN ISO 1461 (huge parts), DIN EN ISO 10684 (connecting elements)	DIN EN 13858 (huge parts), DIN EN ISO 10683 (connecting elements)
Coating thickness (standard values)	Sheet metal parts 8 ... $12 \mu \mathrm{~m}$, norm- and thread parts $5 \ldots 8 \mu \mathrm{~m}$	Hot-dip metal coating refined metal sheet ca. $15 \mu \mathrm{~m}$	Small parts $55 \mu \mathrm{~m}$, huge parts $70 \mu \mathrm{~m}$, connecting elements \geq M8 ca. $40 \mu \mathrm{~m}$	Highest corrosion protection, up to more than 1200 h consistancy in salt spray test*) acc. MPA- Inspection report 9012659000.
Examples				

*) Salt spray test according to DIN EN ISO 9227
In cases where extraordinary corrosion occurs, we recommend additionally:

- Cathodic dip paint - scratch-resistant, durable, impact and saltwater resistant.
- Powder-covering - weatherproof and chemical resistant, RAL colour range or
- our synchronised range of stainless steel products V4A.

Talk to us - we will advise you.

