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Abstract: Domestic hot water (DHW) system energy losses are an important part of energy consump-
tion in newly built or in reconstructed apartment buildings. To reach nZEB or low energy building
targets (renovation cases) we should take these losses into account during the design phase. These
losses depend on room and water temperature, insulation and length of pipes and water circulation
strategy. The target of our study is to develop a method which can be used in the early stages of
design in primary energy calculations. We are also interested in how much of these losses cannot be
utilised as internal heat gain and how much heat loss depends on the level of energy performance of
the building. We used detailed DHW system heat loss measurements and simulations from an nZEB
apartment building and annual heat loss data from a total of 22 apartment buildings. Our study
showed that EN 15316-3 standard equations for pipe length give more than a twice the pipe length
in basements. We recommend that for pipe length calculation in basements, a calculation based on
the building’s gross area should be used and for pipe length in vertical shafts, a building’s heating
area-based calculation should be used. Our study also showed that up to 33% of pipe heat losses can
be utilised as internal heat gain in energy renovated apartment buildings but in unheated basements
this figure drops to 30% and in shafts rises to 40% for an average loss (thermal pipe insulation
thickness 40 mm) of 10.8 W/m and 5.1 W/m. Unutilised delivered energy loss from DHW systems
in smaller apartment buildings can be up to 12.1 kWh/(m2·a) and in bigger apartment buildings not
less than 5.5 kWh/(m2·a) (40 mm thermal pipe insulation).

Keywords: DHW heat loss; DHW circulation; energy performance

1. Introduction

Nearly zero energy (nZEB) apartment buildings have a relatively higher share of
energy use for domestic hot water (DHW) because of reduced heat loss from the well-
insulated building envelope, the use of ventilation heat recovery and LED lighting systems.
DHW energy consumption can be divided between energy used to heat the water and en-
ergy consumed by system losses. Bøhm and Danig showed [1] that in apartment buildings
the heat losses from the hot water system correspond to approximately 65% of the energy
consumption for domestic hot water and the cause of these heat losses should be further
investigated. Later, Bøhm specified [2] that most of the energy demand for DHW is lost in
the circulation system. As the system’s apartment building’s DHW heat loss was 23–70%,
its efficiency was 0.30–0.77. Gassel [3] showed that if the DHW circulation is constantly in
operation, this equates to 15 kWh/m2·a energy consumption, the circulation share being
19% of total DHW heating demand. Horvath et.al [4] showed that when the specific DHW
annual heat demand is between 23.2 and 32.2 kWh/(m2·a), the distribution and circulation
losses are between 5.7 and 9.9 kWh/(m2·a). Zhang et al. [5] indicated that recirculation
loop pipes heat loss represented about one third of a system’s fuel energy consumption
and the average overall system efficiency was only about 34%. Similar results were found
in the study by Marszal-Pomianowska et al. [6], where DHW accounted for 16% to 50% of
total DHW heating consumption. Huhn and Davids [7] showed that the energy losses from
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hot water circulation are in the range of 25% to 75% of the energy used for DHW supply. In
buildings with low DHW consumption, the efficiency is particularly poor. When DHW
use is small than DHW circulation heat loss is more or less the same as in buildings with a
bigger DHW consumption, but the relative share of DHW system losses in those buildings
is bigger.

Minimising DHW distribution and circulation losses improves the efficiency of the
system and the energy performance of the whole building. Kitzberger et al. [8] showed that
minimising the runtime of the circulation pumps and decreasing hot water flow and storage
capacities reduces the annual energy consumption for DHW by 15–25%. Mühlbacher and
Carter [9] deduced a dependency between the energy loss and the operating time of the
circulation pump in buildings with DHW circulation energy use from 21% to 65%. Without
a reduction in the operating time of the circulation pump, energy loss from circulation
was more than 60%. Cholewa et al. [10] showed in their long term field measurements on
performance of DHW, that a significant part (57% to 71%) of the heat loss is allocated to the
circulation of hot water. Using temperature control valves in the risers of the circulation
installation to limit the circulation flow during periods of time when it is not required,
generated average energy savings of 19%. Adam et al. [11] proposed shortening the
circulation runtime (a minimum of 16 h per day) to decrease DHW circulation heat loss.
Bøhm [2] suggested that replacing the bypass function with an in-line supply pipe and
a heat pump can help to reduce the return temperature of the decentralised substation
system. As a result, the annual distribution heat loss decreased by 12%.

Lowering circulation time is one possibility but it depends on how people use DHW.
Ahmed et.al. [12] studied hourly DHW consumption in 86 apartments with 191 occupants
over the course of one year and found that almost 90% of hourly consumption was between
0 and 20 L/(person·h). Two sharp peak consumption periods were present on week-days.
Morning peak consumption was between 7:00 and 9:00 whereas evening peak consumption
was between 20:00 and 22:00. The average consumption was 4.1 and 1.1 L/(person·h) for
peak and non-peak hours respectively. Overnight, DHW consumption was almost zero.

Another possibility for decreasing DHW energy consumption is to lower the DHW
temperature. Navalón [13] showed that by reducing the return temperature to 52 ◦C
(limit temperature to avoid Legionella), the theoretical saving is 15–18%. The growth
of Legionella bacteria is high risk and that is why water temperatures between 25 ◦C
and 45 ◦C should be avoided, ideally maintaining hot water above 50 ◦C. To improve
energy efficiency and avoid the risk of Legionella, Brand [14] suggested stopping the use
of DHW circulation.

In old apartment buildings, heat from DHW distribution and circulation heat losses
are distributed mainly in unheated basements and through shaft walls into apartments.
Grasmanis et.al [15] showed that DHW circulation heat losses in an unheated basement vary
between 10–12% during the non-heating season and 12–15% during the heating season.
Depending on the season, the rate of circulation heat losses from vertical distribution
circulation loop pipes varies from 55% to 60% for five floor buildings and 62% to 67% for
9 or 12 floor buildings. Rocheron [16] showed that the insulation of storage and distribution
systems is an essential parameter in the process of energy savings, especially in the case of
the DHW circulation.

Hamburg and Kalamees [17–19] have found that in reconstructed apartment buildings
with DHW circulation, the energy consumption for circulation is on average 14 kWh/(m2·a)
higher than in buildings without circulation (apartment-based boilers) in the cold Estonian
climate. To minimise the energy performance gap, more accurate design work is needed.
During the early stages of design, exact and accurate input data for dynamic simulation is
usually missing. Over-optimistic assumptions in the initial data and over-simplified energy
calculations may lead to energy performance targets not being met [20]. Arumägi [21]
studied the design of the first net-zero energy buildings in Estonia and concluded that
more thorough analyses are needed in the very first stage of the design to find suitable
solutions and possible compromises between architecture and energy efficiency. Attia and
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De Herde [22] compared ten early design simulation tools for net zero energy buildings
and showed that for nZEBs we should invest more in the early design applications and
tools. At the detailed design stage, it is possible to get the exact length of DHW pipes
from the final building information model (BIM), but this information is missing in the
preliminary design, which is when the designer must demonstrate that energy performance
has been achieved. The length of DHW pipes and their heat loss can be calculated with
EN 15316-3 standard [23], based on the length and width of the building. However, these
parameters are complicated to find in existing buildings which are not rectangular in shape.
This is why using equations of lengths and widths in L-shaped and other irregular shaped
buildings becomes so complex. Therefore, there is a need for a tool that estimates the DHW
system parameters and energy performance that can be used at an early stage of design,
and for the improvement of the methodology for assessing the energy performance of
a building.

The working hypotheses of this study are the following:

• It is possible to estimate accurately enough the length of DHW piping based on the
general characteristics of the building at the early design stage of the building.

• Based on the data of the early design stage, it is possible to calculate DHW circulation
losses with sufficient accuracy and to propose a corresponding supplement to the
calculation method.

Our goal was to find a better equation for calculating DHW and DHW circulation
pipe lengths in basements and shafts than that used in EN 15316-3 standard equations [23].

2. Methods
2.1. Research Scheme to Investigate DHW and DHW Circulation Heat Losses

Our goal was to investigate DHW pipe length and heat loss in Estonian apartment
buildings. We used for this a detailed model of an nZEB case building and compared the
results with measured data from different apartment buildings:

Detailed calibrated dynamic indoor climate and energy simulation model for a nZEB
apartment building (nZEB case building in the information we have from 4 types of
building categories is shown in Table 1.

1. Detailed calibrated dynamic indoor climate and energy simulation model for a nZEB
apartment building (nZEB case building in Table 1) to determine heat loss factors on
room (21 ◦C heated and unheated basement) and water temperature, insulation (0, 20,
40 mm with and without valve insulation) and length of pipes and water circulation
strategy (continuous circulation, clock based);

2. Design DHW pipe length from 15 apartment buildings (Test building in Table 1);
3. Generating a method for calculating pipe length and heat loss from pipes to be used

in early stages of design;
4. Validating of pipe length equation in7 reference apartment buildings (Reference

buildings in Table 1);
5. Validation of DHW heat loss with earlier studied 23 buildings measured heat losses.

In following Table 1 are shown which kind of information we have from 4 types of
building categories.

2.2. nZEB Case Building

The nZEB case building has 80 small sized, one or two bedroomed apartments. More
or less the same sized typical apartment buildings from the period end of 1970s until
early 1990s usually have 60 apartments. The building is a 5-storey, large concrete panel
apartment building with a total heated area of 3562 m2, constructed in 1986 (Figure 1) d
renovated to nZEB in 2018 [24,25]. We chose this building because it had a good monitoring
system in place after its reconstruction, therefore we have hourly data from DHW use,
DHW heating and DHW circulation.
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Table 1. Research scheme and description of studied buildings.

Characteristic nZEB Case
Building Test Buildings Reference

Buildings
Earlier Studied

Buildings

Target Calibration of model and
energy use of DHW

Determination of pipe
length equations

Validating of pipe length
equation

Validating of
DHW heat loss

Description

No. of buildings 1 15 7 23

Building’s basic data Heated area, net area, layout area (floor gross area), volume, length, width, height, number of: floors,
apartments, DHW shafts.

Building pipe length
Detailed 3D BIM and

energy simulation model
with real length of pipes

Measured length of pipes
from 2D-design

drawings + onsite survey

Measured length of pipes
from 2D-design

drawings + onsite survey

A. Length of DHW and DHW circulation pipes

Pipe lengths Detailed simulation with
measured pipe lengths

Generating of Equation
with real pipe length

Validation of the
performance of Equation

with real pipe length

Calculated pipe
length with
generated
Equations

B. Heat loss of DHW pipes

DHW and DHW
circulation heat loss

Detailed simulation
model, calibrated based

on detailed field
measurements

Calculated pipe heat loss
with measured length,
calculated length and

assumed measured losses
from earlier study

Calculated pipe heat loss
with measured length,
calculated length and

assumed measured losses
from earlier study

Measured DHW
system energy

losses

The influence of DHW
system heat loss.

Calibrated model
calculations with

different renovation
scenarios

Calculated DHW system
unutilised heat loss

Calculated DHW system
unutilised heat loss

Calculated DHW
system heat loss
comparison with

measured
consumption

Figure 1. Overview of the nZEB case building after the renovation.

The DHW consumption and heating energy consumption, together with DHW and
DHW circulation heating, was measured from all apartments. In the case study building
which we chose for calibrating our pipe heat loss model, we measured hourly data from
every source (detailed information about DHW volumes and DHW heating energy per
every hour and also circulation energy use) between the period June to November 2019. The
indoor temperature in the main basement room was also measured during the same period.

2.3. Test Buildings and Reference Buildings

We selected test buildings from among the buildings where we have detailed infor-
mation about pipe length and energy use (DHW, DHW circulation) in both basement and
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shafts. We included both new buildings and renovated buildings in the selection. Our goal
was to involve as wide a range of buildings from the sector as possible. These buildings
were constructed between 1970 and 2017 and the main construction method was concrete
(large panels) or brick (Table 2). The average number of apartments was 50 apartments and
floor gross area was 730 m2. Table 2 presents the basic building parameters [26].

Table 2. Basic properties of studied buildings.
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m3 m2 m2 m2 m m m m m

nZEB case building

1.1 Concrete 1986 15757 4330 4330 887 57.5 16.2 16 16 80 147 120 224

Test buildings

1.2 LWC block 1974 3283 998 1306 438 49.0 8.8 6 12 18 116 79 101

1.3 Concrete 1975 12017 2763 3378 727 65.7 11.7 11 11 55 155 86 154

1.4 Concrete 1966 10696 2968 3519 676 61.7 12.2 12 12 60 148 78 126

1.5 Brick 1983 14252 3393 4110 888 61.7 18.6 10 10 50 161 90 112

1.6 Concrete 1970 16114 4606 5030 593 46.8 13.4 8 8 72 121 46 151

1.7 Concrete 2017 15967 4112 4112 859 43.1 32.8 15 15 75 152 84 225

1.8 LWC block 1986 7944 1887 2415 762 72.0 12.0 8 8 24 168 87 67

1.9 Concrete 1981 35403 10840 10840 1323 101.0 13.2 16 24 144 228 166 605

1.10 Concrete 1979 18400 4567 5933 1167 109.9 12.2 18 26 90 244 171 364

1.11 Brick 1977 11143 2022 3211 728 51.9 14.3 10 10 50 132 72 140

1.12 Brick 1970 1844 498 498 234 23.4 10.5 4 4 8 68 33 23

1.13 Brick 1972 5495 1526 1172 520 57.7 18.1 6 12 18 152 73 101

1.14 LWC block 1979 5211 1426 1036 495 48.8 9.9 6 12 18 117 71 101

1.15 LWC block 1975 8945 2054 2448 634 49.2 11.2 9 9 45 121 69 129

Reference buildings

2.1 Concrete 1977 3959 1291 1959 478 48.8 9.9 6 12 18 117 68 101

2.2 Concrete 1986 12763 3669 3669 859 62.3 13.1 12 20 60 151 91 280

2.3 Concrete 1964 13833 3501 4494 861 73.0 12.0 16 16 80 170 109 224

2.4 Concrete 1977 16412 4399 4399 993 75.9 12.7 12 18 60 177 115 252

2.5 Brick 1976 13341 3495 3495 786 62.3 13.6 9 21 45 152 99 294

2.6 Brick 1975 10484 2309 2868 657 33.2 32.0 8 16 40 130 73 224

2.7 LWC block 1987 5979 1508 1862 545 23.8 13.5 6 6 18 75 71 50

The data on DHW and DHW circulation heating energy use from 15 test buildings
(coded 1.1 . . . 1.15) and 7 reference buildings (coded 2.1 . . . 2.7) was calculated from
measured heating energy consumption. We also used data from 23 previously analysed
buildings to compare the calculated energy use of our test and reference buildings with
measured values [17–19].
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2.4. Determining DHW Pipe Length

To come up with an appropriate method for determining DHW pipe length, we
selected 15 buildings with basic data available (which are presented in (Table 2). We
analysed the data (building volume, heating area, net area, floor gross area, total number
of apartments, etc.) from 15 test buildings to find out which data could be used and how to
formulate an equation to generate the length and energy use of the DHW systems. The
buildings’ perimeter and the number of DHW shafts were calculated and counted from the
design drawings of these buildings.

We used R square to find the best parameter model with intercept and for the two
parameter model we used a bootstrapping method [27] to find best frequency by randomly
sampling 2 parameters 10,000 times. Our goal was to find a minimum pipe length difference
from measured values. All measured pipe lengths in the buildings are presented in (Table 2).
Measured DHW pipes and DHW circulation pipes were more or less the same (measured
pipe length in test and reference buildings), which is why we decided to present, for
measured pipe length, an average DHW and DHW circulation pipe length in each building.

These so-determined DHW and DHW circulation pipe lengths were compared with
EN standard (EN-15316-3 [23]) calculated pipe lengths.

Pipe length of DHW (lDHW) (1) and DHW circulation system (lcirc.) (2) in the basement
can be calculated by standard EN-15316-3 [23]. In the Equations, LL is length and LW is
width of the building.

lDHWb = LL + 0.0625·LL·LW, (m) (1)

lcirc.b = 2·LL + 0.0125·LL·LW, (m) (2)

Pipe length of DHW (lDHWs) (lDHWs = 0.038·LL·LW·Nlev·Hfl, (m)) and DHW circulation
system (lcirc.s) (4) in the shafts can be calculated by standard EN-15316-3 [23]. In Equations
LL is length, LW is width, Nlev is number of floors and Hfl is height of floor of the building.

lDHWs = 0.038·LL·LW·Nlev·Hfl, (m) (3)

lcirc.s = 0.0752·LL·LW·Nlev·, (m) (4)

2.5. Indoor Climate and Energy Performance by nZEB Case Building Calibration

The indoor climate and energy performance model was built in the simulation pro-
gram IDA ICE 4.8 [28,29]. This software allows the modelling of a multizone building,
internal heat gains and external solar loads, outdoor climate, heating and ventilation sys-
tems and dynamic simulation of heat transfer and air flows. We were also able to model
heat losses from the zones in which they occurred and represent uninsulated valves by
using a 2 m uninsulated pipe length, which is more or less an average from calculated
values [30].

To calibrate the model we built up a complex model using detailed DHW and DHW cir-
culation drawings for the reference building and then simplified it to create our calculation
model (Figure 2).

Building a simulation model that matched all losses with the zones where those losses
were occurring was very complex. Therefore we simplified the basement to a one zone
model (originally this was a multizone basement with 14 rooms, as we wanted to see how
heat losses affected indoor temperatures in the basement in different thermal insulation
cases (0, 20, 40 mm with and without valve insulation)) but calculated with the different
EPC that we used in earlier studies of the same building [31].
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Figure 2. Simplified case building DHW and DHW circulation piping in basement and shafts.

The calculations can be repeated when the design of DHW and DHW circulation has
been simplified by using a standard length for all main pipe lengths between shafts, and
all pipe lengths and thermal insulation thicknesses have been described. The pipe model
used is important, as is showing where pipes are located (in which zone). All pipes in the
model must be hydraulically balanced, and inlet and outlet water temperature from the
plant should be accurately represented.

Using measured pipe lengths in basement and shafts, we built up a dynamic sim-
ulation model with previously calibrated building heat losses. We measured indoor
temperatures in the basement and used this for calibrating measured heat losses with
calculated ones.

2.6. Heat Losses Calculations from DHW and DHW Circulation Pipes

Heat loss was calculated based on standard EN 15316-3 [23]. By this standard, pipe
heat losses are calculated per length when the temperature difference is 1 Kelvin (Table 3).
In this case, we can assume heat loss from pipes when we know the average basement or
shaft temperature and pipe length in those places. However, indoor temperatures and how
much these losses can be utilised as internal heat gain are both unknown.

Table 3. The dependence of pipe’s heat loss on insulation thickness and pipe diameter.

Pipe’s Outer
Diameter, mm 50 40 25 20

Thermal pipe insulation
thickness, mm Pipe’s linear thermal transmittance Ψ (W/m·K)

40 0.25 0.22 0.17 0.15

20 0.37 0.32 0.23 0.21

0 1.22 0.98 0.62 0.50

2.7. The Influence of DHW and DHW Circulation Heat Loss on the Whole Building Energy
Performance and Indoor Climate

The dependence of DHW heat loss on the energy performance of the building was
analysed by using IDA ICE 4.8 dynamic simulation software. That is why we analysed the
annual loss in the nZEB case building (Figure 1) with different thicknesses of thermal pipe
insulation and with the different building envelope thermal insulations which are typically
used in renovation scenarios in Estonia. Inputs for the simulation model are presented as
the following:

Simulations were done in two different cases, with a heated basement and with an
unheated basement. For this reason, we used two different heated areas 3562 m2 (without
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basement) and 4324 m2 (with basement). In the Figures, EPC classes are designated by
class symbols (A, C, D, E and F).

Our goal was to find out, firstly, how much energy could be utilised from DHW system
pipe losses in the basement and in shafts per calculated length and how large non-utilised
losses per calculated length would be and, secondly, what the EPC class would be with
and without pipe losses in the different cases.

3. Results
3.1. Measured and Calculated DHW Circulation Losses in Case Building

The DHW use in 2018 was 47.6 kWh/m2·a, with energy consumption and DHW
circulation losses having been measured in the nZEB case building at an hourly level. Two
years’ measurements of DHW circulation are shown in Figure 3b. In 2018 the total DHW
circulation loss was 9.4 kWh/(m2·a) (per heated area) and 11.4 kWh/(m2·a) (per apartment
area). In 2019, DHW circulation loss was even higher at 10.3 kWh/m2·a (12.5 kWh/(m2·a)),
as was total DHW system energy use (49.2 kWh/(m2·a)). In both years, the DHW circula-
tion heating energy loss was approximately 20%. The DHW system energy loss in a typical
reconstructed apartment building in Estonia is more or less the same [17].

Figure 3. (a) Measured and calculated indoor temperature in basement; (b) measured and calculated
DHW system heat loss in basement.

In Figure 3a, we can see that measured temperatures during the summer–autumn
period in the basement were constantly more than 22 ◦C, which shows that pipe losses
from DHW, DHW circulation and heating pipe connections with shafts were holding
temperatures higher than the modelled heating set point temperature of 21 ◦C. In this case,
we can see that indoor temperatures are more dependent on losses from piping lengths
and thermal isolation than indoor setpoint temperatures.

3.2. Pipe Length Calculation

To go about finding a best equation for the DHW pipe length in the basements and
shafts, we generated both one and two parameter equations. Table 4 presents the best
results using our buildings’ basic data (equations are made used test buildings’ data).
The best results (the smallest difference in pipe length difference) gained with the one
parameter model equation for basement pipe length using building gross area, was a
length difference between that measured and calculated in the test buildings of 17% and
in reference buildings of 8%, which gave an average of 14%. Using a building perimeter
calculated from the building design drawings gave slightly better results (15.6% with test
buildings) but with reference buildings the average was the same.
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Table 4. Case study building EPC classes with different building envelope thermal transmittances and ventilation strategy.

Energy Performance of Building—Primary Energy (PE) Use and Energy Performance Certificate
(EPC) Class

EPC “A *” and “B”
PE ≤ 125

kWh/(m2·a)

EPC “C”
PE ≤ 150

kWh/(m2·a)

EPC “D”
PE ≤ 180

kWh/(m2·a)

EPC “E”
PE ≤ 220

kWh/(m2·a)

EPC “F”
PE ≤ 280

kWh/(m2·a)

Thermal
transmittance

of building
envelope U,
W/(m2·K)

External wall 0.13 0.17 0.22 0.22 1.0

Basement wall 0.10 0.21 0.61 0.61 0.61

Basement floor 0.23 0.38 0.39 0.39 0.39

Roof 0.11 0.17 0.17 0.22 0.76

Window 0.82 1.0 1.2 1.4 1.7

Ventilation
strategy

Apartments Mechanical ventilation 0.5 L/(s·m2), ventilation heat recovery
(VHR) 0.8. 0.5 L/(s·m2)

no VHR
0.35 L/(s·m2)

no VHR
Common rooms

and heated
basement

Mechanical ventilation 0.5 L/(s·m2),
VHR 0.8.

No VHR
0.5 L/(s·m2)

In unheated room 0.15 L/(s·m2) without heat recovery

* A is together with solar collectors and locally used PV panel electricity production (PE ≤ 105 kWh/(m2·a).

Pipe lengths in shafts was the best fit with the building heating area equation (pipe
length difference from measured lengths were on average 28.3%).

Using for analyses also mean bias error or root mean square error, we can see (Table 5)
that the equation selected in the first step fits well in both cases.

Table 5. Pipe length (in meters) equations, R-square values in test buildings, length difference from measured values, mean
bias errors and root mean square errors in test and reference buildings.

Factor
Equation to

Calculate the
Pipe Length, m

R2 Difference between Measured
and Calculated, % MBE (Mean Bias Error) RMSE (Root Mean Square Error)

Test
Build-
ings

Test
Build-
ings

Reference
Build-
ings

All
Buildings
Average

Test
Build-
ings

Reference
Build-
ings

All
Buildings
Average

Test
Build-
ings

Reference
Build-
ings

All
Buildings
Average

One parameter model Pipe length in basement
x = Volume l = 0.0034·x + 46 0.56 23.8 9.2 19.2 −0.57 −5.8 −2.2 24.4 9.5 20.8

x = Heating area l = 0.0109·x + 53 0.52 23.2 6.8 18.0 −0.04 −4.6 −1.5 25.4 9.2 21.6
x = Net area l = 0.0112·x + 49 0.57 24.6 7.8 19.2 0.03 −4.5 −1.4 23.9 9.4 20.5

x = Gross area l = 0.1235·x − 2 0.82 17.1 8.4 14.4 −0.01 0.2 0.1 15.7 7.7 13.6
x = Apartments

per floor l = 7.2845·x + 13 0.68 22.5 14.5 19.9 0.00 −4.6 −1.5 1.0 14.6 18.9

x = No. shafts l = 6.1258·x + 11 0.89 13.0 28.7 18.0 0.00 17.1 5.4 12.3 28.4 18.9
x = Perimeter of

building l = 0.8015·x − 31 0.85 15.6 11.8 14.4 0.00 −8.9 −2.8 14.1 16.4 14.9

One parameter model Pipe length in shafts
x = Volume l = 0.0163·x − 24 0.87 33.9 31.6 33.2 −0.1 −48.4 −15.5 50.7 65.2 55.7

x = Heating area l = 0.0538·x + 3 0.88 26.8 31.6 28.3 0.1 −45.8 −14.5 48.7 65.0 54.4
x = Net area l = 0.0522·x − 11 0.87 33.9 29.9 32.6 −0.1 −54.1 11.3 50.7 71.9 60.0

x = Gross area l = 0.4471·x − 151 0.74 55.9 32.5 48.5 0.0 −23.8 −7.6 69.9 56.8 66.0
x = Apartments

per floor l = 25.768·x − 91 0.59 36.9 34.7 36.2 0.0 −41.1 −13.1 88.2 85.8 87.4

x = Tot
apartments l = 3.6964·x − 24 0.86 34.7 34.7 34.7 0.0 −58.2 −18.5 53.5 83.3 64.5

x = No shafts l = 21.648·x − 98 0.77 36.5 25.1 32.8 0.0 35.5 11.3 66.1 44.4 60.0
x = Perimeter l = 2.5985·x − 211 0.62 59.3 37.4 52.3 0.0 −54.1 −17.2 85.0 71.9 81.1
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Table 5. Cont.

Factor
Equation to

Calculate the
Pipe Length, m

R2 Difference between Measured
and Calculated, % MBE (Mean Bias Error) RMSE (Root Mean Square Error)

Test
Build-
ings

Test
Build-
ings

Reference
Build-
ings

All
Buildings
Average

Test
Build-
ings

Reference
Build-
ings

All
Buildings
Average

Test
Build-
ings

Reference
Build-
ings

All
Buildings
Average

Two parameter model Pipe length in basement
x = Gross area

and
y = No. shafts

l = 1.04236·x +
3.56701·y 0.94 9.7 18.4 12.5 0.8 10.9 4.0 9.4 18.9 13.2

x = No. shafts and
y = Perimeter

l = 3.02566·x +
0.44814·y − 16 0.96 10.3 18.4 12.9 0.5 4.1 1.7 9.7 18.2 13.0

EN 15316-3 42.6 30.6 38.8 33.3 20.6 29.3 36.8 27.9 34.2

Two parameter model Pipe length in shafts
x = no. shafts and
y = heating area

l = 10.1399·x +
0.03717·y − 67 0.94 23.8 14.3 9.8 0.0 −5.7 −1.8 20.2 20.6 20.4

EN 15316-3 325.3 144.7 267.8 515.2 −94.6 321.2 610.3 114.3 508.0

For the two parameter equation we used a bootstrapping method. Best results for
pipe lengths in basements when combining building gross area and number of DHW shafts
(frequency from 1000 samples was 182) gave an average calculated length difference from
measured length in the test buildings of 10%. However, we were unable to produce good
results using any of the other basic building parameters which are known in the early
design stages. The same lack of good results occurred when calculating pipes in shafts.

Figure 4a shows how well the floor gross area equation corelates with measured pipe
lengths. Black points represent test buildings and blue points reference buildings. From
this graph we can say that in buildings 1.2 and 1.6, the difference between measured pipe
length and calculated pipe length was a little bit more than 30%. In the other test buildings,
the calculated pipe length was on average 13% different from measured values (Figure 4b).

Figure 4. DWH pipe length in basement: (a) measured pipe length compared with floor gross area;
(b) measured pipe length compared with calculated pipe lengths in basement.

DHW pipe lengths in shafts are detailed in Figure 5a,b. Our calculations showed that
on average the pipe length difference from measured values was lowest when using this
equation (in test buildings 35 m). The measured pipe length in six reference buildings was
larger, which showed that by using this equation for calculations, we will probably get
over-optimistic results compared to measured values in the future.
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Figure 5. DHW pipe length in shaft: (a) measured pipe length compared with heating area;
(b) measured pipe length compared with calculated pipe lengths in shafts.

Compared with the EN standard calculation method of using the heating area in the
calculations, we can see large differences in the results for pipe lengths in shafts when
compared to our equations. In test buildings, the average length difference using the EN
standard equation was 258%. In comparison, our generated equation using the heated area
gave an average length difference of 28%. In Figure 6a, we can see that the EN standard
equation gave us results that were a little too pessimistic. The calculated pipe lengths in
basements, when using the EN standard, was better than in shafts. The difference from
measured length on average (test and reference buildings) was 39%, while the difference
from calculated length, when using floor gross area, was 14% (Figure 6b).

Figure 6. (a) Calculated pipe length in shafts with EN standard 15316-3 and using heating area;
(b) calculated pipe length in basement with EN standard 15316-3 and using building gross area.

3.3. Parameters Influencing Heat Loss from DHW Circulation Piping

We investigated DHW pipe heat losses in the reference building:

• With different thickness of thermal insultation (0, 20 and 40 mm);
• With and without DHW circulation balancing valve insulation;
• Temperature in basement 21 ◦C or unheated;
• With different energy performance classes (EPC) (A, C, D, E, and F);
• Circulation pump working time.

To visualise how the various parameters influence energy loss from pipes, we decided
to compare all EPC classes separately with different thicknesses of DHW thermal pipe
insulation when the basement is both unheated and heated. In Figure 7a, we can see that
with different EPC classes, unutilised DHW system losses varied between 48% to 81% in the
unheated basement and this variance did not depend on the thickness of the pipes’ thermal
insulation. In the heated basement, unutilised heat loss from DHW pipes was between 24%
to 71% (Figure 8b). Figure 7 shows the influence of thermal pipe insulation. When DHW
system pipes are insulated with 20 mm of thermal insulation (EPC class A) than the total
heat loss from pipes is 16 kWh/(m2·a) but unutilised pipe losses are , which means that
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utilised pipe losses, as an internal gain, are 3 kWh/(m2·a). The same situation was apparent
in the heated basement with 12 kWh/(m2·a) total loss, 8 kWh/(m2·a) unutilised losses and
a utilised pipe loss of 4 kWh/(m2·a). We also analysed what occurs when the circulation
pump is switched off during the night (22.00 until 6.00) and day-time (9.00 until 16.00),
when DHW usage is low. We used for our calculations a measured usage profile and we
found out that energy loss was decreased by only 0.5 kWh/(m2·a) compared with constant
circulation. As this effect was so low, we did not include this analysis in the figures.

Figure 7. Total DHW pipe heat losses per heated area compared with unutilised pipe heat loss with
different EPC classes and thermal pipe insulation: (a) when basement is not heated (i—unheated
basement); (b) when basement is heated (k—heated basement).

Figure 8. Pipe loss in basement and in shafts (W/m): (a) when basement is not heated (i—unheated
basement); (b) when basement is heated (k—heated basement).

In cases where we have found the equation for pipe length separately in the basement
and shafts, we wanted to see how large the pipe heat loss was, per length (W/m). We
discovered that in all EPC classes, pipe losses from pipes covered with same thickness
of thermal pipe insulation are almost the same (Figure 8a,b). With 40 mm of thermal
pipe insulation, the pipe heat loss in an unheated basement averaged 11 W/m and in a
heated basement 9.5 W/m. In shafts, the loss was more or less the same at 5 W/m. From
Figure 7a,b, we can see how much of the entire losses are unutilised but we are not able to
separate this between basements and shafts.

In Figure 9a, we can see that in unheated basements, the unutilised pipe losses in
EPC classes C to F were more or less the same, between 58% and 70%. Only class A
has unutilised losses of more than 80%. In Figure 10b, we can see a bigger gap between
unutilised pipe losses in basements. In pipes with thermal insulation, the unutilised pipe
losses in classes D, E and F are on average 18%, whereas for classes A and C these are
over 60%. When the basement is heated, it is more realistic to assume that the basement
envelopes are insulated and most of the pipe losses there are not utilised. Unutilised losses
in shafts are, in classes E and F, on average 35% and in other classes from 55% to 80%.
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Figure 9. Unutilised pipe losses in basements and in shafts: (a) when basement is not heated
(i—unheated basement); (b) when basement is heated (k—heated basement).

Figure 10. Measured and calculated DHW system pipe losses in buildings: (a) calculated as if in all
buildings thermal pipe insulation is 40 mm and valves are not insulated; (b) calculated as if in all
buildings thermal pipe insulation is 20 mm.

When comparing measured and calculated pipe lengths with the gross area equation
(l = 0.1235x − 1.6744), then the difference between measured and calculated lengths in the
basement is (DHW + DHW circulation pipes) 44 m (measured 260 and calculated 216 m)
(10.1%) and in shafts using the calculation heating area equation (l = 0.0538x + 2.7782) the
difference is 24 m (measured 448 m and calculated 472 m) (11.7%).

3.4. Heat Loss from DHW Piping in Earlier Studied Buildings

Based on nZEB case building DHW system heat loss analyses (Figures 7a, 8a and 9a),
we compared earlier studied building measured heat losses with calculated values. We cal-
culated all 23 buildings’ pipe lengths in basement and in shaft using generated pipe length
equations. EPC did not make a difference to DHW pipe heat losses in cases where the
basement was not heated. We selected EPC class C for the DHW system heat loss calcula-
tions, in the first step with a pipe insulation of 40 mm (without circulation valve insulation)
(Figure 10a), the total calculated loss in the basement was (10.5 W/m) 5.6 kWh/(m2·a) with
unutilised losses of 3.8 kWh/(m2·a) (69% of total); and in shafts (5 W/m) 5.8 kWh/(m2·a)
with unutilised losses of 3.3 kWh/(m2·a) (57% of total). Total unutilised pipe loss was
7.1 kWh/(m2·a). In other buildings, the average calculated pipe loss was 12.9 kWh/(m2·a)
(Figure 10a) and average unutilised loss was 67% of this figure. Compared with the average
measured loss of 16.3 kWh/(m2·a) we can calculate a similar loss with a 20 mm thickness
of thermal pipe insulation in Figure 10b.

If the average pipe loss in these buildings with 20 mm thermal pipe insulation is good
then, building by building, we can see big differences from the measured loss. The mean
absolute error from measured values is 4.2 kWh/(m2·a).
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3.5. Generating Heat Loss Equation from DHW Piping

While generating the equation from our nZEB case building, we noticed that, to a
certain extent, pipe heat loss and DHW system loss utilisation as an internal heat gain
depend on the EPC class and also on how much the DHW system pipes are insulated.
Basement heat losses also depend on whether the basement is heated or not. We decided
not to include EPC classes D, E and F with heated basements into the generated equation.

Our reference building showed that pipe losses per length were more or less the same
across the different EPC classes.

From our research we generated an equation for DHW system heat loss from our
case study loss analyses. In Table 6., pipe losses per length are presented with different
thicknesses of thermal pipe insulation and also how much the pipe losses are unutilised as
internal heat gain.

Table 6. Pipe losses per length with different thicknesses of thermal pipe insulation (qa) and how
much of the losses are unutilised as internal heat gain (Qunut.).

Insulation of Pipes Basement is Unheated

Ba
se

m
en

tl
os

se
s

qa.basement, W/m
Qunut. basement, %

EPC “A” EPC “C”

40 mm (insulated valves) 8.3

83 7040 mm (uninsulated valves) 10.8

20 mm 13.6

Basement is heated +21 ◦C

qa.basement, W/m Qunut. basement, %

40 mm (insulated valves) 7.0

56 4840 mm (uninsulated valves) 9.2

20 11.5

Sh
af

tl
os

se
s qa.shaft, W/m Qunut. shaft, %

40 mm 5.1

69 5920 mm 6.8

0 mm 15.5

From this, we can generate a different heat loss equation for unutilised DHW sys-
tem heat loss in the basement (ΦaDHW basement Equation (5)) and in shafts (ΦaDHW shaft
Equation (6)):

ΦaDHW basement = lDHW cella·qa.basement·Qunut. basement·8760·10−3/Aheat, kWh/(m2·a) (5)

ΦaDHW shaft = lDHW shaft·qa.shaft·Qunut.shaft·8760·10−3/Aheat kWh/(m2·a) (6)

Aheat is building heating area (m2)
lDHW is calculated pipe length (l)
qa is pipe heat loss per calculated length (W/m)
Qunut. is unutilised pipe loss (%)
8760 is hours per year (h)

Using for our calculations the best equation to find the pipe length in basements (equa-
tion with floor gross area) and in shafts (equation with heating area), we then calculated, in
all test and reference buildings with thermal pipe insulation of 40 mm (without thermal
insulation on circulation pipe valves), the annual heat loss per heated area (basement is
unheated). In Figure 10, we can see good correlation with the heating area. Buildings
which have a larger heating area have lower pipe losses. The minimum unutilised pipe
heat loss in a building is 5.5 kWh/(m2·a) (total 7.6 kWh/(m2·a)) even though the heated
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area is more than twice as large as the second biggest building. From this graph we can say
that, for over 5000 m2 of heated area, the pipe heat losses are the same. In smaller buildings
however, there can be unutilised losses of up to 12.1 kWh/(m2·a).

All buildings calculated average was 8.7 kWh/(m2·a) and median 8.2 kWh/(m2·a).

4. Discussion

In existing buildings where circulation losses are not measured separately, it is hard to
separate the share of these losses from the entire building’s energy use. In a previous study,
we also analysed DHW circulation losses. In 23 buildings, the DHW circulation losses were
not directly measured but were calculated from measured DHW consumption and the
known total energy consumption for DHW. The graph Figure 11. presents all the buildings’
DHW circulation heat loss against the heated area. In those buildings, DHW circulation
heat loss was 16.3 kWh/(m2·a) except in one outlier building, where it was extremely high
(34 kWh/(m2·a)). Earlier studies of other buildings’ measured DHW system heat loss
showed that, in similar buildings, it can vary considerably.

Figure 11. Test and reference building calculated unutilised DHW system pipe heat loss with 40 mm
thermal pipe insulation without circulation valve thermal insulation and basement heating (EPC A).

From the Figure, we can see that across the same types of building (code 1.2), the
measured DHW system energy loss can be from 9.5 to 34 kWh/(m2·a) and the calculated
loss (with 40 mm pipe insulation) 15.4 kWh/(m2·a). In all seven of these buildings, the
DHW and DHW circulation pipe lengths are very similar. The differences in heat loss
came from the quality of the thermal pipe insulation installation work and the thickness of
insulation. Basement heat losses in those buildings were also different.

In earlier studies we have noticed, when comparing volume-based measured DHW-
calculated energy use with measured entire DHW energy consumption, that losses from
pipes were on average 16.3 kWh/(m2·a) [17–19]. From all the buildings’ DHW energy
need this was 27–62%, the average from 22 buildings was 44%. Very similar results were
found in earlier studies. Bøhm and Danig showed, from the entire DHW heating energy
need, a 65% loss [1] and later Bøhm specified it as 23–70% [2]. Similar losses have also
been shown by Gassel [3] and Zhang et al. [5]. Horvath et al. [4] showed a slightly lower
DHW system heat loss of between 5.7 and 9.9 kWh/(m2·a). Our calculations showed that
5.5 kWh/(m2·a) is the minimum loss in apartment buildings.

If DHW system pipe losses are not integrated into energy efficiency calculations we
have shown that the predicted energy consumption is lower than the actual measured
values taken in use. Furthermore, the expected EPC might be one class higher (C class
improved to D class). One of our goals for finding an equation for DHW system pipe
lengths was that, in the design phase, we would be able to make accurate predictions of
the probable future energy consumption of apartment buildings.

In our research, we analysed different factors such as building volume, heating area,
net area, floor gross area, total number of apartments. Our decision was not to analyse
as per EN standard (EN 15316-3 [23]) with building lengths and DHW pipe lengths in
the basement.
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From our analysis, we decided to consider in our future calculation method for
assuming DHW and DHW circulation pipe length, that for pipes located in basements,
we would use the building gross area and for pipes located in shafts, the building heating
area. Our analysis showed that the two parameter model quality is no better than the one
parameter model, which is why we decided to only use the one parameter model for the
length calculations.

As we had data from DHW system pipe losses from buildings studied earlier, we
wanted to see how the calculated length correlated with measured pipe losses. As we had
detailed the measured DHW losses in our reference building, we were able to analyse pipe
losses in different EPC classes (A, C, D, E and F) with different thickness of thermal pipe
insulation and with heated and without heated basements. From these analyses, we have
found that in different EPC class buildings, pipe loss per heated area is more or less the
same. The difference is in how these losses are utilised as an internal heat gain, and here
there is a difference between heated and unheated basements. In an EPC class C building
with an unheated basement, we can utilise, in the entire building, ca. 33% of pipe heat
losses, but separately basement losses of 30% and shaft losses of 40%. If we focus on 40 mm
of pipe insulation then heat loss per pipe length in the basement is 10.5 W/m and in shafts
5.0 W/m. From this we can calculate, for a similar building with calculated pipe length, the
entire DHW system pipe losses. With a larger heated area, we have lower heat loss from
pipes and our calculation showed in Figure 11 that, in buildings of over 5000 m2 heated
area, the unutilised loss cannot fall below 5.5 kWh/(m2·a) (total 7.6 kWh/(m2·a)) with
40 mm of thermal pipe insulation, when the basement is unheated. We have also shown
that the maximum unutilised heat loss is 12.1 kWh/(m2·a) (total 15.7 kWh/(m2·a)). This
shows that in smaller apartment buildings, the same piping heat loss from DHW systems
is over 6 kWh/(m2·a) greater. The EPC class in smaller buildings can be affected by the net
DHW system loss of 12.1 kWh/(m2·a) with a primary energy factor 0.65 (efficient district
heating), 8.7 kWh/(m2·a) (district heating efficiency 0.9) and with factor 1.0 (heating with
gas) 12.7 kWh/(m2·a) (gas boiler efficiency 0.95). To reach current EPC limits we should, in
the future, also include in the calculations the DHW unutilised system losses.

Comparing the calculated length in all buildings (test and reference) then, on average,
the pipe length in shafts is 0.11 m/m2 (per heated area) with the Finnish method for
calculating heat loss for EPC classes giving 0.2 m/m2 [32]. According to this regulation, the
loss from pipes in heated areas (depending on pipe insulation) is 6 or 10 W/m. Compare
this to our calculation, which gave an average of 5 or 7 W/m. The Finnish regulation for
calculated length in basements was not simplified. There is, however, a sentence in the
regulation which states that pipe length in basements should be measured.

If volume-based DHW energy use by Estonian regulations [33] is 30 kWh/(m2·a) and
calculated unutilised circulation loss is between 5.5 kWh/(m2·a) and 12.1 kWh/(m2·a),
then circulation loss is between 18% and 40%. This is more than Grasmanis at.al. [15]
have found.

Himpe [34] concluded that simplified heat loss calculation methods can be signifi-
cantly improved when the estimation of two influential parameters, that is the average
temperature of the heat conducting medium and the working time of the system, reflects
the actual design and operation of the systems. In their suggested equation, there is a sim-
ple question regarding the length of DHW and DHW circulation pipes. Our study showed
that EN standard equations give us an overly pessimistic pipe length in basements and
shafts and also that indoor temperatures in basements vary depending on the basement’s
thermal envelope properties.

5. Conclusions

Pipe heat losses in low-energy or nZEB apartment buildings can be more than 10% of
the entire primary energy consumption. At this point in time, DHW and DHW circulation
energy consumption heat losses are based on the volume of water consumption. Most
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apartment buildings have unheated basements where the main pipelines for DHW and
DHW circulation are located.

Our work shows that:

• Pipe length is the most important value to use when assessing pipe heat losses in
apartment buildings;

# Pipe length with EN standard equation is not relevant for Estonian
apartment buildings:

n Length and width of buildings in the Estonian Registry of Buildings
database is presented as a maximum and is not useful for nonrectangu-
lar shaped buildings;

n Length according to EN 15316-3 standard for pipe gives over-long pipe
lengths compared to Estonian apartment buildings;

# Using floor gross area for calculating basement pipe length gave an average
14% difference from measured pipe length in all buildings;

# Using the building heating area for calculating vertical shaft pipe lengths gave
an average 28.3% difference from measured pipe length in all buildings;

# With 40 mm thermal insulation on the pipes, heat losses from pipes in an EPC
C class basement were 10.8 W/m and in shafts 5.1 W/m, and with 20 mm
thermal insulation heat losses were 13.6 W/m in the basement and 6.5 W/m in
the shafts.

• Pipe heat loss calculations in the reference building showed that the difference between
thermal insulation levels on pipes did not affect how much heat loss from pipes can
be utilised as internal heat gain;

# For EPC class C buildings without basement heating, utilised pipe heat losses
were in total 33%, and separately, in basements 30% and in shafts 40%.

• Heat loss from calculated lengths compared between the different thicknesses of
thermal pipe insulation was more or less the same in buildings with different EPC
classes and the actual value itself was more or less the same, which enables our
equations to be used in all EPC classes of buildings.

Our study gives an alternative method for calculating heat losses from DHW systems
in apartment buildings.
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