## Hot water storage tank dimensioning <br> Establishing what is needed for efficient operation of the heating system

Buffer storage tanks are used in the most varied of heating systems. They store hot water from when heated until its extraction when required and, in this way, bridge operating interruptions of the heat generators. Only correct dimensioning saves you from unnecessary energy consumption and costs.

## Buffer storage tanks are selected and designed in line with the following parameters:

» Type of heat generation, e.g. CHP, solid fuels, solar
» Receiving system types, e.g. under-floor heating, domestic water, radiators
" Loading and unloading capacities
» Individual heat demand
» Properties of the heat transferring fluid
" Hydraulic components and aspects (pressure ratios)
» Characteristics of the heat-transferring components
» Utilization degree
» Effective heat flow volume in kWh
» Additional heating system

## As-needed design calculation acc. to heat generator.

Solid fuels - in keeping with DIN EN 303-5: $\quad V_{\text {Ps }}=$ Capacity of the buffer storage tank in I
$\mathrm{a}_{\mathrm{k}}=$ Boiler rated output in kW
$V_{\text {PS }}=15 * Q_{K} * T_{B} *\left(1-0,3 * Q_{H} / Q_{K \text { min }}\right)$
$T_{B}=$ min. boiler output in kW
$\mathrm{a}_{\mathrm{H}}=$ Nominal burn-off period in h
$\mathrm{a}_{\mathrm{kmin}}=$ Heating load of the building in kW

## Solar installations:

$$
V_{P S}=\frac{A_{W F} * V_{S P}}{a_{W F}}
$$

## Heating pumps:

$V_{P S}=\frac{P_{W P} * t}{(c * \Delta T)}$
$V_{P S}=$ Capacity of the buffer storage tank in I
$\mathrm{A}_{\mathrm{wF}}=$ Living space to be heated in $\mathrm{m}^{3}$
$V_{S P}=$ Specific storage tank flow per $\mathrm{m}^{2}$ of collector surface in $\mathrm{I} / \mathrm{m}^{2}$
$a_{\mathrm{wF}}=$ Specific living space per $\mathrm{m}^{2}$ of collector surface in $\mathrm{I} / \mathrm{m}^{2}$
$V_{P S}=$ Capacity of the buffer storage tank in I
$P_{w P}=$ Heat output of the heat pump in kW
$\mathrm{t}=$ Bridging time given an interruption to operations
$\mathrm{c}=\quad$ Specific water heat capacity
$\Delta T=$ Temperature difference Supply flow / Return flow in K

[^0]The size of the domestic water storage tank should be optimally dimensioned and designed to cater for needs to ensure that the heating system is run in an energy and cost-efficient manner. The number of people in the household and their hot water consumption determine the hot water requirements. The 6023 VDI directive proceeds on the assumption of a daily per head consumption of 30-50 litres of domestic hot water. This is in addition to a minimum 100 litres capacity which planning should also consider.

## Domestic water storage tanks are designed in line with the following parameters:

| "Number of those in the household " Type of heat generation |  |
| :--- | :--- |
| " Number of dwelling units (detached |  |
| nouse or apartment block) | " Loading and unloading capacities |

» Individual hot water demand
" Hydraulic components and aspects (pressure ratios)

As-needed design calculation in keeping with form DIN 4708-2 (example here of a detached house with bath-equipped bathroom):

Hot water demand - centrally supplied apartments


Note: This is an extract from DIN 4708-2. The extensive design calculation of domestic water storage tanks is subject to additional calculations. They can be taken from the DIN.


[^0]:    Note: If it is a matter of the size of the buffer storage tank (tank capacity), then preference should preferably be given to the larger appropriate model. It must be appreciated here that the capacity of the buffer storage tanks increases four-squared to the diameter. This means that a larger buffer storage tank will always be higher than thicker. Please refer on this to our size chart as from Page 80.

